精英家教網 > 高中數學 > 題目詳情

(08年惠州市調研二文) (14分)已知數列是等差數列, ;數列的前n項和是,且

(Ⅰ) 求數列的通項公式; 

(Ⅱ) 求證:數列是等比數列;

(Ⅲ) 記,求的前n項和

解析:析:主要考察等差、等比數列的定義、式,求數列的和的方法.

解:(Ⅰ)設的公差為,則:,,

,∴,∴. ………………………2分

.  …………………………………………4分

(Ⅱ)當時,,由,得.     …………………5分

時,,

,即.  …………………………7分

  ∴.   ……………………………………………………………8分

是以為首項,為公比的等比數列. …………………………………9分

(Ⅲ)由(2)可知:.   ……………………………10分

. …………………………………11分

.    ………………………………………13分

.  …………………………………………………14分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(09年江蘇百校樣本分析)(10分)挑選空軍飛行學員可以說是“萬里挑一”,要想通過需過“五關”――目測、初檢、復檢、文考、政審等. 某校甲、乙、丙三個同學都順利通過了前兩關,有望成為光榮的空軍飛行學員. 根據分析,甲、乙、丙三個同學能通過復檢關的概率分別是0.5,0.6,0.75,能通過文考關的概率分別是0.6,0.5,0.4,通過政審關的概率均為1.后三關相互獨立.

(1)求甲、乙、丙三個同學中恰有一人通過復檢的概率;

(2)設通過最后三關后,能被錄取的人數為,求隨機變量的期望

查看答案和解析>>

科目:高中數學 來源: 題型:

(09年江蘇百校樣本分析)(10分)(矩陣與變換)  給定矩陣  A=, =

(1)求A的特征值、及對應的特征向量;  

(2)求

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年莆田四中一模理) (14分)

由函數確定數列,,若函數的反函數 能確定數列,,則稱數列是數列的“反數列”。

(1)若函數確定數列的反數列為,求的通項公式;

(2)對(1)中,不等式對任意的正整數恒成立,求實數的范圍;

(3)設,若數列的反數列為,的公共項組成的數列為;求數列項和

 

查看答案和解析>>

科目:高中數學 來源: 題型:

(05年遼寧卷)(12分)

已知函數.設數列滿足,數列滿足

,

(Ⅰ)用數學歸納法證明;(Ⅱ)證明

查看答案和解析>>

科目:高中數學 來源: 題型:

(05年湖北卷文)(12分)

設數列的前n項和為Sn=2n2,為等比數列,且

   (Ⅰ)求數列的通項公式;

   (Ⅱ)設,求數列的前n項和Tn.

查看答案和解析>>

同步練習冊答案