(本小題滿分12分)

為了了解小學(xué)五年級(jí)學(xué)生的體能情況,抽取了實(shí)驗(yàn)小學(xué)五年級(jí)部分學(xué)生進(jìn)行踢毽子測(cè)試,將所得的數(shù)據(jù)整理后畫出頻率分布直方圖(如圖),已知圖中從左到右的前三個(gè)小組的頻率分別是0.1,0.3,0.4,第一小組的頻數(shù)是5.

(Ⅰ)求第四小組的頻率和參加這次測(cè)試的學(xué)生人數(shù);

(Ⅱ)在這次測(cè)試中,問學(xué)生踢毽子次數(shù)的中位數(shù)落在第幾小組內(nèi)?

(Ⅲ)在這次跳繩測(cè)試中,規(guī)定跳繩次數(shù)在110以上的為優(yōu)秀,試估計(jì)該校此年級(jí)跳繩成績(jī)的優(yōu)秀率是多少?

 

【答案】

(1)0.2(2) 第三小組(3)

【解析】

試題分析:解:(Ⅰ)由題意可知第四小組的頻率為    …………………2分

參加這次測(cè)試的學(xué)生人數(shù)為:                   ………………………4分

(Ⅱ)由題意可知學(xué)生踢毽子次數(shù)的中位數(shù)落在第三小組內(nèi);      ………………………7分

(Ⅲ)因?yàn)榻M距為25,而110落在第三小組,所以跳繩次數(shù)在110以上的頻率為

,所以估計(jì)該校此年級(jí)跳繩成績(jī)的優(yōu)秀率是 ………12分

考點(diǎn):本試題考查了直方圖的運(yùn)用。

點(diǎn)評(píng):根據(jù)直方圖的方形面積代表頻率是解決該試題的關(guān)鍵,同時(shí)能利用頻率和頻數(shù)以及樣本容量的關(guān)系來求解頻數(shù)等,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案