【題目】如圖,在平面直角坐標(biāo)系中,橢圓 的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(1)求橢圓的方程;

(2)已知點,設(shè)是橢圓上關(guān)于軸對稱的不同兩點,直線相交于點,求證:點在橢圓上.

【答案】(1)(2)見解析

【解析】(1)解:由題意知b.

因為離心率e,所以.所以a2.

所以橢圓C的方程為1.

(2)證明:由題意可設(shè)M,N的坐標(biāo)分別為(x0,y0),(x0y0),則直線PM的方程為yx1

直線QN的方程為yx2.

(證法1)聯(lián)立①②解得x,y,即T.

1可得84.

因為

1,所以點T坐標(biāo)滿足橢圓C的方程,即點T在橢圓C上.

(證法2)設(shè)T(x,y).聯(lián)立①②解得x0,y0.

因為1,所以1.整理得(2y3)2,所以12y84y212y9,即1.

所以點T坐標(biāo)滿足橢圓C的方程,即點T在橢圓C上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求對稱軸是軸,焦點在直線上的拋物線的標(biāo)準(zhǔn)方程;

(2)過拋物線焦點的直線它交于兩點,求弦的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列滿足,.

(1)求;

(2)先猜想出的一個通項公式,再用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1的方程為3x+4y﹣12=0.

(1)若直線l2與l1平行,且過點(﹣1,3),求直線l2的方程;

(2)若直線l2與l1垂直,且l2與兩坐標(biāo)軸圍成的三角形面積為4,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點與點都在橢圓上.

(1)求橢圓的方程;

(2)若的左焦點、左頂點分別為,則是否存在過點且不與軸重合的直線 (記直線與橢圓的交點為),使得點在以線段為直徑的圓上;若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】;~塘是某地一種獨具地方特色的農(nóng)業(yè)生產(chǎn)形式,某研究單位打算開發(fā)一個;~塘項目,該項目準(zhǔn)備購置一塊平方米的矩形地塊,中間挖成三個矩形池塘養(yǎng)魚,挖出的泥土堆在池塘四周形成基圍(陰影部分所示)種植桑樹,池塘周圍的基圍寬均為米,如圖,設(shè)池塘所占總面積為平方米.

Ⅰ)試用表示

Ⅱ)當(dāng)取何值時,才能使得最大?并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 的中點,如圖 2.

(1)求證: 平面;

(2)求證: 平面

(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為, ,離心率為,且過點

)求橢圓的標(biāo)準(zhǔn)方程.

、、是橢圓上的四個不同的點,兩條都不和軸垂直的直線分別過點, ,且這條直線互相垂直,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在女子十米跳臺比賽中,已知甲、乙兩名選手發(fā)揮正常的概率分別為0.90.85,求

(1)甲、乙兩名選手發(fā)揮均正常的概率;

(2)甲、乙兩名選手至多有一名發(fā)揮正常的概率;

(3)甲、乙兩名選手均出現(xiàn)失誤的概率.

查看答案和解析>>

同步練習(xí)冊答案