假設有A、B、C、D、E 5個條件相當?shù)拇髮W生去應聘某公司的同一職位時,但只能有3個人被錄取,若5個人被錄取的機會是相等的.
(Ⅰ)求大學生A被錄取的概率;
(Ⅱ)求大學生A或B被錄取的概率.
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:根據(jù)題意列出所有的基本事件,列出所有的基本事件,
(Ⅰ)查到大學生A被錄取的情況,利用古典概率求得,
(Ⅱ)查到和大學生A或B被錄取的情況,利用古典概率求得.
解答: 解:A、B、C、D、E 5個條件相當?shù)拇髮W生有3個人被錄取的所有可能情況有如下10種;
(A,B,C),(A,B,D),(A,B,E),(A,C,D),(A,C,E),
(A,D,E),(B,C,D),(B,C,E),(B,D,E),(C,D,E);
(Ⅰ)大學生A被錄取的情況有6種,
故大學生A被錄取的概率P=
6
10
=
3
5
;
(Ⅱ)大學生A或B被錄取的情況有9種,
故大學生A或B被錄取的情況有9種概率為P=
9
10
點評:本題考查求一個事件的概率,應該先判斷出事件的概率模型,然后選擇合適的概率公式進行計算.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
log
1
2
x , x>0
f(x+3) , x≤0
,則f(f(4))=(  )
A、-2B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=4x-cosx,則f(x)在[0,2π]上的零點個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知定點F(1,0),點P在y軸上運動,點M在x軸上,點N為平面內(nèi)的動點,且滿足
PM
PF
=0,
PM
+
PN
=0.
(1)求動點N的軌跡C的方程;
(2)設點Q是直線l:x=-1上任意一點,過點Q作軌跡C的兩條切線QS,QT,切點分別為S,T,設切線QS,QT的斜率分別為k1,k2,直線QF的斜率為k0,求證:k1+k2=2k0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某人射擊一次,其中命中7~10環(huán)的概率表:
命中環(huán)數(shù) 7 8 9 10
概率 0.32 0.28 0.18 0.12
(1)求射擊一次,至少命中8環(huán)的概率;
(2)求射擊一次,命中的環(huán)數(shù)不到9環(huán)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有4名學生,分別插入A、B兩班學習,求每班最多只能接收3名學生,且甲不去A班的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=
2
3
an+n-4,bn=(-1)n(an-3n+21),其中λ為實數(shù),n為正整數(shù).
(1)對任意實數(shù)λ,求證:a1,a2,a3不成等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(3)設Sn為數(shù)列{bn}的前n項和.是否存在實數(shù)λ,使得對任意正整數(shù)n,都有Sn>-12?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinx,cosx),
b
=(6sinx+cosx,7sinx-2cosx).設函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的最大值及此時x的取值集合;
(Ⅱ)在角A為銳角的△ABC中,角A、B、C的對邊分別為a、b、c,f(A)=6且△ABC的面積為3,b+c=2+3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
,AB=1,M是PB的中點.
(Ⅰ)證明:面PAD⊥面PCD;
(Ⅱ)求AC與PB所成的角;
(Ⅲ)求面AMC與面BMC所成二面角的大小余弦值.

查看答案和解析>>

同步練習冊答案