【題目】在平面直角坐標(biāo)系xOy中,曲線C上的點到點的距離與它到直線的距離之比為,圓O的方程為,曲線Cx軸的正半軸的交點為A,過原點O且異于坐標(biāo)軸的直線與曲線C交于B,C兩點,直線AB與圓O的另一交點為P,直線PD與圓O的另一交點為Q,其中,設(shè)直線AB,AC的斜率分別為

1)求曲線C的方程,并證明到點M的距離

2)求的值;

3)記直線PQBC的斜率分別為、,是否存在常數(shù),使得?若存在,求的值,若不存在,說明理由.

【答案】1,證明見解析;(2;(3)存在;

【解析】

1)利用兩點間距離公式和點到直線的距離公式列出方程,從而求出曲線的方程,并能證明到點的距離;(2)設(shè),則,代入橢圓方程,運用直線的斜率公式,化簡即可得到所求值;(3)聯(lián)立直線和橢圓方程,求得點坐標(biāo),再求出直線和直線的斜率,從而得到的值.

1)曲線上的點到點的距離

與它到直線的距離之比為

所以可得,

整理得曲線的方程為:

是橢圓的右焦點,是橢圓上的點,

所以到點的距離.

2)設(shè),則,

所以,

所以

.

3)聯(lián)立,得到,

所以,其中

所以,,

聯(lián)立,得到,

所以,其中,

所以,,

所以,

所以,

所以存在常數(shù),使得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,為兩非零有理數(shù)列(即對任意的,均為有理數(shù)),為一無理數(shù)列(即對任意的,為無理數(shù)).

1)已知,并且對任意的恒成立,試求的通項公式.

2)若為有理數(shù)列,試證明:對任意的恒成立的充要條件為

3)已知,,對任意的,恒成立,試計算

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,的中點,平面,且在矩形中,.

1)求證:;

2)求證:平面

3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).

1)求曲線的普通方程;

2)經(jīng)過點(平面直角坐標(biāo)系中點)作直線交曲線, 兩點,若恰好為線段的三等分點,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)設(shè),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點, 求實數(shù)的取值范圍;

(Ⅱ) 證明: 當(dāng)時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線與拋物線交于兩點,與橢圓交于,兩點,直線,,為坐標(biāo)原點)的斜率分別為,,,若.

(1)是否存在實數(shù),滿足,并說明理由;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)設(shè),若函數(shù)的兩個極值點恰為函數(shù)的兩個零點,且的范圍是,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案