【題目】某企業(yè)質(zhì)量檢驗員為了檢測生產(chǎn)線上零件的情況,從生產(chǎn)線上隨機抽取了個零件進行測量,根據(jù)所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,求這個零件尺寸的中位數(shù)(結果精確到
);
(2)已知尺寸在上的零件為一等品,否則為二等品. 將這
個零件尺寸的樣本頻率視為概率,從生產(chǎn)線上隨機抽取
個零件,試估計所抽取的零件是二等品的概率.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)當a=1時,若關于的不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次不等式ax2+x+b>0的解集為(-∞,-2)∪(1,+∞).
(Ⅰ)求a和b的值;
(Ⅱ)求不等式ax2-(c+b)x+bc<0的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓(
)的離心率為
,左、右焦點分別為
、
,
為橢圓的下頂點,
交橢圓于另一點
、
的面積
.
(1)求橢圓的方程;
(2)過點作直線
交橢圓于
、
兩點,點
關于
軸的對稱點為
,問:直線
是否過定點?若是,請求出定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市約有20萬住戶,為了節(jié)約能源,擬出臺“階梯電價”制度,即制定住戶月用電量的臨界值,若某住戶某月用電量不超過
度,則按平價(即原價)0.5(單位:元/度)計費;若某月用電量超過
度,則超出部分按議價
(單位:元/度)計費,未超出部分按平價計費.為確定
的值,隨機調(diào)查了該市100戶的月用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖.根據(jù)頻率分布直方圖解答以下問題(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).
(1)若該市計劃讓全市70%的住戶在“階梯電價”出臺前后繳納的電費不變,求臨界值;
(2)在(1)的條件下,假定出臺“階梯電價”之后,月用電量未達度的住戶用電量保持不變;月用電量超過
度的住戶節(jié)省“超出部分”的60%,試估計全市每月節(jié)約的電量.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是拋物線
的頂點,
,
是
上的兩個動點,且
.
(1)判斷點是否在直線
上?說明理由;
(2)設點是△
的外接圓的圓心,點
到
軸的距離為
,點
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:
的長軸長為4,離心率為
.直線
交于點
,傾斜角互補,且直線
與橢圓
的交點分別為
(點
在點
的右側).
(Ⅰ)求橢圓的方程;
(Ⅱ)證明:直線的斜率為定值;
(Ⅲ)在橢圓上是否存在一點,恰好使得四邊形
為平行四邊形,若存在,分別指出此時點
和
的坐標;若不存在,簡述理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)滿足
時,
;
時
,若函數(shù)
的圖象與直線
有四個不同的公共點,則實數(shù)
的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的四個頂點圍成的四邊形的面積為
,原點到直線
的距離為
.
(1)求橢圓的方程;
(2)已知定點,是否存在過
的直線
,使
與橢圓
交于
,
兩點,且以
為直徑的圓過橢圓
的左頂點?若存在,求出
的方程:若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com