【題目】已知一次函數(shù)f(x)為增函數(shù),且f(f(x))=4x+9,g(x)=mx+m+3(m∈R).
(1)當(dāng)x∈[-1,2]時,若不等式g(x)>0恒成立,求m的取值范圍;
(2)如果函數(shù)F(x)=f(x)g(x)為偶函數(shù),求m的值;
(3)當(dāng)函數(shù)f(x)和g(x)滿足f(g(x))=g(f(x))時,求函數(shù)的值域.
【答案】(1)(-1,+∞);(2) ;(3) .
【解析】試題分析:
(1)由題意得到關(guān)于實(shí)數(shù)m的不等式組,求解不等式組可得m的取值范圍是(-1,+∞).
(2)首先得到關(guān)于的解析式,結(jié)合可得;
(3)由題意可得;結(jié)合函數(shù)的解析式換元,令,據(jù)此得到關(guān)于的二次函數(shù),結(jié)合可得函數(shù)的值域為.
試題解析:
(1)由題意即
解得m>-1,
∴m的取值范圍是(-1,+∞).
(2)設(shè)f(x)=kx+b(k>0),
則由f(f(x))=4x+9,
得k2x+kb+b=4x+9,
∴∴∴f(x)=2x+3.
F(x)=(2x+3)(mx+m+3),
又F(x)是偶函數(shù),
∴F(-1)=F(1),
即(2m+3)×5=3,
∴m=-.
(3)由f(g(x))=g(f(x)),可得m=3,
∴g(x)=3x+6,
∴h(x)=2x+3+(x≥-2),
設(shè)t=,
則t∈[0,+∞)且x=(t2-6),
∴y=(t2-6)+3+t
=t2+t-1
=2-,
∵t∈[0,+∞),
∴y∈[-1,+∞),
故h(x)值域為[-1,+∞).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),若存在使得成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓的一組等分點(diǎn)分別涂上紅色或藍(lán)色,從任意一點(diǎn)開始,按逆時針方向依次記錄個點(diǎn)的顏色,稱為該圓的一個“階段序”,當(dāng)且僅當(dāng)兩個階色序?qū)?yīng)位置上的顏色至少有一個不相同時,稱為不同的階色序.若某圓的任意兩個“階段序”均不相同,則稱該圓為“階魅力圓”.“3階魅力圓”中最多可有的等分點(diǎn)個數(shù)為( )
A.4 B.6
C. 8 D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+x2(a∈R)在x=﹣處取得極值.
(1)確定a的值;
(2)討論函數(shù)g(x)=f(x)ex的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的二次函數(shù)f(x)=x2+(2t-1)x+1-2t.
(1)求證:對于任意t∈R,方程f(x)=1必有實(shí)數(shù)根;
(2)若<t<,求證:方程f(x)=0在區(qū)間(-1,0)及內(nèi)各有一個實(shí)數(shù)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修:坐標(biāo)系與參數(shù)方程
已知曲線C的極坐標(biāo)方程為ρ﹣4cosθ+3ρsin2θ=0,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l過點(diǎn)M(1,0),傾斜角為.
(Ⅰ)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(Ⅱ)若曲線C經(jīng)過伸縮變換后得到曲線C′,且直線l與曲線C′交于A,B兩點(diǎn),求|MA|+|MB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱柱中,,點(diǎn)為的中點(diǎn),點(diǎn)在線段上.
(Ⅰ)當(dāng)時,求證;
(Ⅱ)是否存在點(diǎn),使二面角等于60°?若存在,求的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀:
已知、,,求的最小值.
解法如下:,
當(dāng)且僅當(dāng),即時取到等號,
則的最小值為.
應(yīng)用上述解法,求解下列問題:
(1)已知,,求的最小值;
(2)已知,求函數(shù)的最小值;
(3)已知正數(shù)、、,,
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)是奇函數(shù),函數(shù)的定義域為.
(1)求的值;
(2)若在上單調(diào)遞減,根據(jù)單調(diào)性的定義求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若函數(shù)在區(qū)間上有且僅有兩個不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com