【題目】將圓的一組等分點分別涂上紅色或藍色,從任意一點開始,按逆時針方向依次記錄個點的顏色,稱為該圓的一個“階段序”,當且僅當兩個階色序對應位置上的顏色至少有一個不相同時,稱為不同的階色序.若某圓的任意兩個“階段序”均不相同,則稱該圓為“階魅力圓”.“3階魅力圓”中最多可有的等分點個數(shù)為( )
A.4 B.6
C. 8 D.10
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E的右焦點與拋物線的焦點重合,點M在橢圓E上.
(Ⅰ)求橢圓E的標準方程;
(Ⅱ)設,直線與橢圓E交于A,B兩點,若直線PA,PB關于x軸對稱,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國慶期間,某旅行社組團去風景區(qū)旅游,若旅行團人數(shù)在 人或 人以下,每人需交費用為 元;若旅行團人數(shù)多于 人,則給予優(yōu)惠:每多 人,人均費用減少 元,直到達到規(guī)定人數(shù) 人為止.旅行社需支付各種費用共計 元.
Ⅰ 寫出每人需交費用 關于人數(shù) 的函數(shù);
Ⅱ 旅行團人數(shù)為多少時,旅行社可獲得最大利潤?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形為梯形, , 平面, , , , 為中點.
(1)求證:平面平面;
(2)線段上是否存在一點,使平面?若有,請找出具體位置,并進行證明:若無,請分析說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設:實數(shù)滿足不等式, :函數(shù)無極值點.
(1)若“”為假命題,“”為真命題,求實數(shù)的取值范圍;
(2)已知“”為真命題,并記為,且: ,若是的必要不充分條件,求正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】心理學家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關,某數(shù)學興趣小組為了驗證此結論,從全體組員中按分層抽樣的方法抽取50名同學(男生30人、女生20人),給每位同學立體幾何題、代數(shù)題各一道,讓各位同學自由選擇一道題進行解答,選題情況統(tǒng)計如下表:(單位:人)
立體幾何題 | 代數(shù)題 | 總計 | |
男同學 | 22 | 8 | 30 |
女同學 | 8 | 12 | 20 |
總計 | 30 | 20 | 50 |
(1)能否有97.5%以上的把握認為“喜歡空間想象”與“性別”有關?
(2)經(jīng)統(tǒng)計得,選擇做立體幾何題的學生正答率為,且答對的學生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進行研究,記抽取的兩人中答對的人數(shù)為,求的分布列及數(shù)學期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)f(x)為增函數(shù),且f(f(x))=4x+9,g(x)=mx+m+3(m∈R).
(1)當x∈[-1,2]時,若不等式g(x)>0恒成立,求m的取值范圍;
(2)如果函數(shù)F(x)=f(x)g(x)為偶函數(shù),求m的值;
(3)當函數(shù)f(x)和g(x)滿足f(g(x))=g(f(x))時,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求的值;
(2)設,若函數(shù)與的圖象有且只有一個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com