【題目】已知函數(shù).

(1)當時,求的最小值;

(2)若上為單調(diào)函數(shù),求實數(shù)的取值范圍.

【答案】12.

【解析】試題分析:

1根據(jù)導(dǎo)函數(shù)的符號判斷函數(shù)的單調(diào)性,并根據(jù)單調(diào)性求極值,進而可得最值。(2將問題轉(zhuǎn)化為導(dǎo)函數(shù)在大于等于0或小于等于0解決,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值問題。

試題解析:

(1)當時,

,(舍去

變化時 的變化情況如下表:

2

-

0

+

極小值

由上表可得當時,

時,函數(shù)的最小值為

2,

上為單調(diào)函數(shù),

時, 恒成立,

恒成立,

恒成立.

,則

時, , 單調(diào)遞減,

又當 時, ;當時, ,

故當上為單調(diào)函數(shù)時,實數(shù)的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)上的最大值為1,求實數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,橢圓的左、右焦點分別為離心率為,兩準線之間的距離為8,在橢圓上,且位于第一象限,過點作直線的垂線,過點作直線的垂線

(1)求橢圓的標準方程;

(2)若直線的交點在橢圓,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與直線相切.

(1)若直線與圓交于兩點,求;

(2)設(shè)圓軸的負半軸的交點為,過點作兩條斜率分別為的直線交圓兩點,且,試證明直線恒過一定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,圓的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

(1)若直線與圓相交于, 兩點,求弦長;

(2)以該直角坐標系的原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,圓和圓的交點為 ,求弦所在直線的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預(yù)賽和決賽兩個階段.下表為10名學(xué)生的預(yù)賽成績,其中有三個數(shù)據(jù)模糊.

學(xué)生序號

1

2

3

4

5

6

7

8

9

10

立定跳遠(單位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳繩(單位:次)

63

a

75

60

63

72

70

a1

b

65

在這10名學(xué)生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則

A2號學(xué)生進入30秒跳繩決賽

B5號學(xué)生進入30秒跳繩決賽

C8號學(xué)生進入30秒跳繩決賽

D9號學(xué)生進入30秒跳繩決賽

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點上的點,滿足.

1)當點在圓上運動時,求點的軌跡方程;

2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, , 是坐標原點,且時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=axlnx﹣x+l (aR),且f(x)0.

(I)求a;

II)求證:當,nN*時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·武昌調(diào)研)如圖,在圓內(nèi)畫1條線段,將圓分成2部分;畫2條相交線段,將圓分割成4部分;畫3條線段,將圓最多分割成7部分;畫4條線段,將圓最多分割成11部分.則

(1)在圓內(nèi)畫5條線段,將圓最多分割成________部分;

(2)在圓內(nèi)畫n條線段,將圓最多分割成________部分.

查看答案和解析>>

同步練習(xí)冊答案