已知數(shù)列{an}前n項和為Sn,首項為a1,且1,an,Sn成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列滿足bn=(log2an+1)(log2an+2),求證:
1
b1
+
1
b2
+
1
b3
+…+
1
bn
<1.
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)根據(jù)1,an,Sn成等差數(shù)列,建立條件關系,利用構(gòu)造法進行化簡,由此能求出an
(Ⅱ)確定數(shù)列的通項,利用裂項法求和,即可證明結(jié)論.
解答: (Ⅰ)解:∵1,an,Sn成等差數(shù)列,
∴2an=Sn+1,
當n=1時,2a1=a1+1,∴a1=1,
當n≥2時,Sn=2an-1,Sn-1=2an-1-1,
兩式相減得an=2an-2an-1,
即an=2an-1,
∴數(shù)列{an}是以1為首項,2為公比的等比數(shù)列,
∴an=a1•2n-1=1•2n-1=2n-1
(Ⅱ)證明:bn=(log2an+1)(log2an+2)=n(n+1),
1
bn
=
1
n(n+1)
=
1
n
-
1
n+1
,
1
b1
+
1
b2
+
1
b3
+…+
1
bn
=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
<1.
點評:本題主要考查等差數(shù)列和等比數(shù)列的應用,考查裂項法求和,要求熟練掌握相應的公式,考查學生的計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果實數(shù)x、y滿足(x+2)2+y2=3,求
y
x
的最大值、2y-x的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,an=
4an-1
kan-1+1
(n≥2).
(1)求數(shù)列{an}的通項公式;
(2)當1<k<3時,證明不等式:a1+a2+…+an
3n-8k
k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)字0,1,2,3,4,5,6組成沒有重復數(shù)字的四位數(shù),其中個位、十位和百位上的數(shù)字之和為偶數(shù)的四位數(shù)共有
 
個(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知△AOB中,點C與點B關于點A對稱,
OD
=2
DB
,DC和OA交于點E,設O
A
=
a
,
OB
=
b

(1)用
a
b
表示向量
OC
DC
;
(2)若
OE
=
λOA
,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

省少年籃球隊要從甲、乙兩所體校選拔隊員.現(xiàn)將這兩所體校共20名學生的身高繪制成如莖葉圖(單位:cm):若身高在180cm以上(包括180cm)定義為“高個子”,身高在180cm以下(不包括180cm)定義為“非高個子”.
(1)用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,如果從這5人中隨機選2人,那么至少有一人是“高個子”的概率是多少?
(2)從兩隊的“高個子”中各隨機抽取1人,求恰有1人身高達到190cm的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,與AA1平行的棱有
 
條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
=(
3
sinx,sinx),
b
=(cosx,sinx),x∈[0,
π
2
]
(1)若|
a
|=|
b
|,求x的值
(2)設函數(shù)f(x)=
a
b
,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設點A,B是圓x2+y2=4上的兩點,點C(1,0),如果∠ACB=90°,則線段AB長度的最大值為
 

查看答案和解析>>

同步練習冊答案