【題目】在等比數(shù)列{an}中,a1=1,且a2是a1與a3﹣1的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足 .求數(shù)列{bn}的前n項和 .
【答案】
(1)解:設等比數(shù)列{an}的公比為q,
a2是a1與a3﹣1的等差中項,即有a1+a3﹣1=2a2,
即為1+q2﹣1=2q,解得q=2,
即有an=a1qn﹣1=2n﹣1
(2)解: =an+
=2n﹣1+( ﹣ ),
數(shù)列{bn}的前n項和 =(1+2+22+…+2n﹣1)+(1﹣ + ﹣ + ﹣ +…+ ﹣ )
= +1﹣ =2n﹣
【解析】(1)設等比數(shù)列{an}的公比為q,運用等差數(shù)列的性質和等比數(shù)列的通項公式,解方程可得公比q,即可得到所求通項公式;(2)化簡bn=2n﹣1+( ﹣ ),運用分組求和和裂項相消求和,化簡即可得到所求和.
【考點精析】利用等比數(shù)列的通項公式(及其變式)和數(shù)列的前n項和對題目進行判斷即可得到答案,需要熟知通項公式:;數(shù)列{an}的前n項和sn與通項an的關系.
科目:高中數(shù)學 來源: 題型:
【題目】某校高二年級設計了一個實驗學科的能力考查方案:考生從6道備選題中一次性隨機抽取3道題,并獨立完成所抽取的3道題.規(guī)定:至少正確完成其中2道題的便可通過該學科的能力考查.已知6道備選題中考生甲能正確完成其中4道題,另2道題不能完成;考生乙正確完成每道題的概率都為.
(Ⅰ)分別求考生甲、乙能通過該實驗學科能力考查的概率;
(Ⅱ)記所抽取的3道題中,考生甲能正確完成的題數(shù)為,寫出的概率分布列,并求及.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過點的動直線與拋物線: 相交于, 兩點.當直線的斜率是時, .
(1)求拋物線的方程;
(2)設線段的中垂線在軸上的截距為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E的中心在坐標原點,焦點在x軸上,離心率為 ,且橢圓E上一點到兩個焦點距離之和為4;l1 , l2是過點P(0,2)且互相垂直的兩條直線,l1交E于A,B兩點,l2交E交C,D兩點,AB,CD的中點分別為M,N.
(1)求橢圓E的方程;
(2)求l1的斜率k的取值范圍;
(3)求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx.
(1)求函數(shù)f(x)的圖象在x=1處的切線方程;
(2)若函數(shù)y=f(x)+ 在[ ,+∞)上有兩個不同的零點,求實數(shù)k的取值范圍;
(3)是否存在實數(shù)k,使得對任意的x∈( ,+∞),都有函數(shù)y=f(x)+ 的圖象在g(x)= 的圖象的下方;若存在,請求出最大整數(shù)k的值,若不存在,請說明理由(參考數(shù)據(jù):ln2=0.6931, =1.6487).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O為極點,x軸的非負半軸為極軸建立極坐標系;
(1)設M(x,y)是圓C上的動點,求m=3x+4y的取值范圍;
(2)求圓C的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣mx(m∈R).
(1)若曲線y=f(x)過點P(1,﹣1),求曲線y=f(x)在點P的切線方程;
(2)若f(x)≤0恒成立求m的取值范圍;
(3)求函數(shù)f(x)在區(qū)間[1,e]上最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com