【題目】三條直線3x+2y+6=0,2x-3m2y+18=0和2mx-3y+12=0圍成直角三角形,求實數(shù)m的值.

【答案】(1)或m=

【解析】

直線2mx-3y+12=0過定點A(0,4),若三條直線能圍成直角三角形,則根據(jù)直線垂直與斜率之間的關系即可得到結論.

(1)當直線3x+2y+6=0與直線2x-3m2y+18=0垂直時,有6-6m2=0,∴m=1或m=-1.

若m=1,直線2mx-3y+12=0也與直線3x+2y+6=0垂直,因而不能構成三角形,故m=1應舍去.

∴m=-1.

(2)當直線3x+2y+6=0與直線2mx-3y+12=0垂直時,有6m-6=0,m=1(舍).

(3)當直線2x-3m2y+18=0與直線2mx-3y+12=0垂直時,有4m+9m2=0.

∴m=0或m=

經檢驗,這兩種情形均滿足題意.

綜上所述,m=-1或m=0或m=

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校團委組織了文明出行,愛我中華的知識競賽,從參加考試的學生中抽出60名學生,將其成績(單位:分)整理后,得到如下頻率分布直方圖(其中分組區(qū)間為,,.

1)求成績在的頻率,并補全此頻率分布直方圖;

2)求這次考試平均分的估計值;

3)若從成績在的學生中任選兩人,求他們的成績在同一分組區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等比數(shù)列{an}中,a1=1,且a2是a1與a3﹣1的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足 .求數(shù)列{bn}的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sinωxcosωx+ cos2ωx﹣ (ω>0),直線x=x1 , x=x2是y=f(x)圖象的任意兩條對稱軸,且|x1﹣x2|的最小值為
(1)求f(x)的表達式;
(2)將函數(shù)f(x)的圖象向右平移 個單位后,再將得到的圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,若關于x的方程g(x)+k=0,在區(qū)間 上有且只有一個實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=sinxcosx﹣cos2(x+ ).
(1)求f(x)的單調區(qū)間;
(2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c,若f( )=0,a=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是等腰梯形, , , ,在梯形中, ,且, 平面.

(1)求證:面;

(2)若二面角的大小為,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 是[1,∞]上的增函數(shù).當實數(shù)m取最大值時,若存在點Q,使得過Q的直線與曲線y=g(x)圍成兩個封閉圖形,且這兩個封閉圖形的面積總相等,則點Q的坐標為(
A.(0,﹣3)
B.(0,3)
C.(0,﹣2)
D.(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,為保護河上古橋OA,規(guī)劃建一座新橋BC,同時設立一個圓形保護區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端OA到該圓上任意一點的距離均不少于80 m.經測量,點A位于點O正北方向60 m,C位于點O正東方向170 m(OC為河岸),tanBCO=.

1)求新橋BC的長;

2)當OM多長時,圓形保護區(qū)的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(xa)(xb)(其中ab),若f(x)的圖象如圖所示,則函數(shù)g(x)=axb的圖象大致為(  )

A. B. C. D.

查看答案和解析>>

同步練習冊答案