4.已知向量$\overrightarrow a=({0,-2\sqrt{3}})$,$\overrightarrow b=({1,\sqrt{3}})$,則向量$\overrightarrow a$在$\overrightarrow b$方向上的投影為-3.

分析 根據(jù)平面向量的數(shù)量積的幾何意義求向量的投影.

解答 解:因為向量$\overrightarrow a=({0,-2\sqrt{3}})$,$\overrightarrow b=({1,\sqrt{3}})$,
則向量$\overrightarrow a$在$\overrightarrow b$方向上的投影為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}=\frac{-2\sqrt{3}×\sqrt{3}}{\sqrt{1+3}}=-3$;
故答案為:-3.

點評 本題考查了平面向量數(shù)量積的幾何意義;熟記數(shù)量積公式是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)f(x)=$\frac{1}{4}$sinxcosx是(  )
A.最小正周期為2π的偶函數(shù)B.最小正周期為2π的奇函數(shù)
C.最小正周期為π的偶函數(shù)D.最小正周期為π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,△PAD為正三角形,四邊形ABCD為直角梯形,CD∥AB,BC⊥AB,平面PAD⊥平面ABCD,點E、F分別為AD、CP的中點,AD=AB=2CD=2.
(Ⅰ)證明:直線EF∥平面PAB;
(Ⅱ)求直線EF與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知實數(shù)x、y滿足$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,則z=x-y的取值范圍是( 。
A.[0,3]B.[-$\frac{17}{5}$,3]C.[-$\frac{17}{5}$,1]D.[-$\frac{17}{5}$,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=|x+2|-2|x+1|.
(1)求f(x)的最大值;
(2)若存在x∈[-2,1]使不等式a+1>f(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知實數(shù)m>1,實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}y≥x\\ y≤2x\\ x+y≤1\end{array}\right.$,若目標函數(shù)z=x+my的最大值等于3,則m的值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.對于函數(shù)f(x)=x2-2x+3(x≥2),若存在x0∈[2,+∞),使f(x0)=m成立,則實數(shù)m的取值范圍為[3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某城市理論預測2020年到2024年人口總數(shù)與年份的關(guān)系如下表所示
年份202x(年)01234
人口數(shù) y(十萬)5781119
(Ⅰ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(Ⅱ)據(jù)此估計2025年該城市人口總數(shù).
參考數(shù)值:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30,
參考公式:用最小二乘法求線性回歸方程系數(shù)公式 $\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若關(guān)于x的不等式|x|+|x+a|<b的解集為(-2,1),則實數(shù)對(a,b)=(1,3).

查看答案和解析>>

同步練習冊答案