已知橢圓
=1(0<
b<2)與
y軸交于
A,
B兩點,點
F為該橢圓的一個焦點,則△
ABF面積的最大值為( ).
不妨設點
F的坐標為(
,0),而|
AB|=2
b,∴
S△ABF=
×2
b×
=
b=
≤
=2(當且僅當
b2=4-
b2,即
b2=2時取等號),故△
ABF面積的最大值為2.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的中心在坐標原點O,左頂點
,離心率
,
為右焦點,過焦點
的直線交橢圓
于
、
兩點(不同于點
).
(1)求橢圓
的方程;
(2)當
的面積
時,求直線PQ的方程;
(3)求
的范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
=1的左焦點為F
1,右頂點為A,上頂點為B.若∠F
1BA=90°,則橢圓的離心率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,在平面直角坐標系
xOy中,
F1,
F2分別為橢圓
=1(
a>
b>0)的左、右焦點,
B,
C分別為橢圓的上、下頂點,直線
BF2與橢圓的另一個交點為
D,若cos∠
F1BF2=
,則直線
CD的斜率為________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
和雙曲線
有相同的焦點
,
是兩曲線的一個交點,則
的值是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若
P0(
x0,
y0)在橢圓
=1(
a>
b>0)外,則過
P0作橢圓的兩條切線的切點為
P1,
P2,則切點弦
P1P2所在直線方程是
=1.那么對于雙曲線則有如下命題:若
P0(
x0,
y0)在雙曲線
=1(
a>0,
b>0)外,則過
P0作雙曲線的兩條切線的切點為
P1,
P2,則切點弦
P1P2所在的直線方程是______.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
雙曲線
C1:
=1(
m>0,
b>0)與橢圓C
2:
=1(
a>
b>0)有相同的焦點,雙曲線
C1的離心率是
e1,橢圓
C2的離心率是
e2,則
+
( ).
A. | B.1 | C. | D.2 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若拋物線
的焦點與橢圓
的右焦點重合,則p的值為( )
查看答案和解析>>