已知矩形的兩個頂點位于x軸上,另兩個頂點位于拋物線y=4-x2在x軸上方的曲線上,求這種矩形中面積最大者的邊長.
考點:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:設(shè)位于拋物線上的矩形的一個頂點為(x,y),且x>0,y>0,設(shè)矩形的面積為S,則S=2x(4-x2),0<x<2.由S′(x)=8-6x2=0,利用導(dǎo)數(shù)性質(zhì)能求出這種矩形中面積最大者的邊長.
解答: 解:設(shè)位于拋物線上的矩形的一個頂點為(x,y),且x>0,y>0,
則另一個在拋物線上的頂點為(-x,y),
在x軸上的兩個頂點為(-x,0)、(x,0),其中0<x<2.
設(shè)矩形的面積為S,則S=2x(4-x2),0<x<2.
由S′(x)=8-6x2=0,得x=
2
3
3
,
∵x∈(0,
2
3
3
)
時,S′(x)>0,S(x)是增函數(shù);
x∈(
2
3
3
,2
)時,S′(x)<0,S(x)是減函數(shù),
∴x=
2
3
3
是S在(0,2)上的極值點,即是最大值點,
∴這種矩形中面積最大者的邊長為2x=
4
3
3
點評:本題考查種矩形中面積最大者的邊長的求法,是中檔題,解題時要注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=2x3+ax2+bx+c的導(dǎo)數(shù)為f′(x),若y=f′(x)的圖象關(guān)于直線x=-
1
2
對稱,且在x=1處取得極小值-6.
(Ⅰ)求實數(shù)a,b,c的值;
(Ⅱ)求函數(shù)f(x)在[-3,3]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=x3-3x2+3ax-3a+3.
(Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)當(dāng)x∈[0,2]時,求曲線y=f(x)的單調(diào)區(qū)間;
(Ⅲ)若a<
2
3
,求|f(x)|在x∈[0,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,滿足a1=1,an=2an-1+2n-1,設(shè)bn=
an
2n-1

(1)證明數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
q,當(dāng)x=
p
q
(p,q∈N+,
p
q
為既約真分?jǐn)?shù),0<p<q)
0,x為(0,1)中的無理數(shù)

證明:對任意x0∈(0,1),任意正數(shù)δ,(x0-δ,x0+δ)?(0,1),有f(x)在(x0-δ,x0+δ)上無界.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:ax2-(a2-a-1)x-a+1≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于兩個非空集合M、P,定義運(yùn)算:M?P=x|x∈M或x∈P,且x∉M∩P}.已知集合A={x|x2-3x-4=0},B={y|y=x2-2x+1,x∈A},則A?B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=x3+
3
2
x2+m在[-2,1]上的最大值為
9
2
,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由拋物線y=x2和直線2x-y=0所圍成的圖形的面積等于
 

查看答案和解析>>

同步練習(xí)冊答案