【題目】已知a,b,c均大于1,且logaclogbc=4,則下列各式中,一定正確的是( )
A.ac≥b
B.ab≥c
C.bc≥a
D.ab≤c
【答案】B
【解析】解:∵a、b、c均大于1,logaclogbc=4, ∴l(xiāng)ogcalogcb= ,
∴l(xiāng)ogca、logcb大于零,
則logcalogcb≤ (logca+logcb)2 ,
即 ≤ (logca+logcb)2 ,
∴(logca+logcb)2≥1,
∴(logcab)2≥1,
∴l(xiāng)ogcab≥1或logcab≤﹣1,當(dāng)且僅當(dāng)logca=logcb,即a=b時(shí)取等號(hào),
∵a、b、c均大于1,
∴l(xiāng)ogcab>1,
解得ab≥c,
故選:B
【考點(diǎn)精析】本題主要考查了對(duì)數(shù)的運(yùn)算性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握①加法:②減法:③數(shù)乘:④⑤才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為選拔參加“央視猜燈謎大賽”的隊(duì)員,在校內(nèi)組織猜燈謎競(jìng)賽.規(guī)定:第一階段知識(shí)測(cè)試成績(jī)不小于分的學(xué)生進(jìn)入第二階段比賽.現(xiàn)有名學(xué)生參加知識(shí)測(cè)試,并將所有測(cè)試成績(jī)繪制成如下所示的頻率分布直方圖.
(1)估算這名學(xué)生測(cè)試成績(jī)的中位數(shù),并求進(jìn)入第二階段比賽的學(xué)生人數(shù);
(2)將進(jìn)入第二階段的學(xué)生分成若干隊(duì)進(jìn)行比賽.現(xiàn)甲、乙兩隊(duì)在比賽中均已獲得分,進(jìn)入最后強(qiáng)答階段.搶答規(guī)則:搶到的隊(duì)每次需猜條謎語(yǔ),猜對(duì)條得分,猜錯(cuò)條扣分.根據(jù)經(jīng)驗(yàn),甲隊(duì)猜對(duì)每條謎語(yǔ)的概率均為,乙隊(duì)猜對(duì)每條謎語(yǔ)的概率均為,猜對(duì)第條的概率均為.若這兩條搶到答題的機(jī)會(huì)均等,您做為場(chǎng)外觀眾想支持這兩隊(duì)中的優(yōu)勝隊(duì),會(huì)把支持票投給哪隊(duì)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,幾何體EF﹣ABCD中,CDEF為邊長(zhǎng)為2的正方形,ABCD為直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(Ⅰ)求證:AC⊥FB
(Ⅱ)求二面角E﹣FB﹣C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)設(shè),對(duì)任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)二次函數(shù)f(x)=ax2+bx+c(a為非零整數(shù)),四位同學(xué)分別給出下列結(jié)論,其中有且只有一個(gè)結(jié)論是錯(cuò)誤的,則錯(cuò)誤的結(jié)論是( )
A.﹣1是f(x)的零點(diǎn)
B.1是f(x)的極值點(diǎn)
C.3是f(x)的極值
D.點(diǎn)(2,8)在曲線y=f(x)上
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓右頂點(diǎn)與右焦點(diǎn)的距離為,短軸長(zhǎng)為
(I)求橢圓的方程;
(Ⅱ)過(guò)左焦點(diǎn)F的直線與橢圓分別交于A、B兩點(diǎn),若三角形OAB的面積為求直線AB的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)m∈R,復(fù)數(shù)z=(m2﹣3m﹣4)+(m2+3m﹣28)i,其中i為虛數(shù)單位.
(1)當(dāng)m為何值時(shí),復(fù)數(shù)z是虛數(shù)?
(2)當(dāng)m為何值時(shí),復(fù)數(shù)z是純虛數(shù)?
(3)當(dāng)m為何值時(shí),復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)在復(fù)平面內(nèi)位于第四象限?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 是的中點(diǎn),底面為矩形, , , ,且平面平面,平面與棱交于點(diǎn),平面與平面交于直線.
(1)求證: ;
(2)求與平面所成角的正弦值為,求的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com