【題目】已知離心率為的橢圓過點,點分別為橢圓的左、右焦點,過的直線與交于兩點,且.
(1)求橢圓的方程;
(2)求證:以 為直徑的圓過坐標原點.
【答案】(Ⅰ)(Ⅱ)見解析
【解析】試題分析:
(1)利用離心率結合橢圓所過的點得到關系 的方程組,求解方程組即可求得橢圓的標準方程;
(2)分類討論,當斜率不存在的時候單獨考查,當斜率存在的時候設出直線方程,聯(lián)立直線與橢圓的方程,結合韋達定理和平面向量的結論證得 即可.
試題解析:
(Ⅰ)點, 分別為橢圓的左右焦點,橢圓的方程為;
由離心率為得: ;
過點得: ;
所以, , ;橢圓方程為;
(Ⅱ)由(1)知, ;令, ;
當直線的斜率不存在時,直線方程為;
此時, ,不滿足;設直線方程為;
代入橢圓方程得:
韋達定理: , ;
所以, ,
;
所以, ;
點到直線的距離為;
所以,由得: ;
所以,以為直徑的圓過坐標原點
科目:高中數(shù)學 來源: 題型:
【題目】對于數(shù)列{an},定義 為{an}的“優(yōu)值”,現(xiàn)在已知某數(shù)列{an}的“優(yōu)值” ,記數(shù)列{an﹣kn}的前n項和為Sn , 若Sn≤S5對任意的n∈N+恒成立,則實數(shù)k的最大值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線: ,曲線: (為參數(shù)),以坐標原點為極點, 軸正半軸為極軸,建立極坐標系.
(Ⅰ)求曲線, 的極坐標方程;
(Ⅱ)曲線: (為參數(shù), , )分別交, 于, 兩點,當取何值時, 取得最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓和點,動圓經過點且與圓相切,圓心的軌跡為曲線
(1)求曲線的方程;
(2)點是曲線與軸正半軸的交點,點在曲線上,若直線的斜率滿足求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內角A、B、C的對邊分別為a、b、c.己知asinA+csinC﹣ asinC=bsinB, (Ⅰ)求B;
(Ⅱ)若A=75°,b=2,求a,c.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1) 若函數(shù)在點處的切線方程為,求的值;
(2) 若,求函數(shù)在區(qū)間上的最小值;
(3) 對任意的,都有,求正實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4;坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點, 軸正半軸為極軸的極坐標中,曲線.
(Ⅰ)求直線的普通方程和曲線的直角坐標方程.
(Ⅱ)求曲線上的點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,曲線的極坐標方程是,以極點為原點,極軸為軸正半軸(兩坐標系取相同的單位長度)的直角坐標系中,曲線的參數(shù)方程為:(為參數(shù)).
(1)求曲線的直角坐標方程與曲線的普通方程;
(2)將曲線經過伸縮變換后得到曲線,若分別是曲線和曲線上的動點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】天氣預報說,在今后的三天中,每一天下雨的概率均為50%.現(xiàn)采用隨機模擬試驗的方法估計這三天中恰有兩天下雨的概率:先利用計算器產生0到9之間取整數(shù)值的隨機數(shù),用0,1,2,3,4表示下雨,用5,6,7,8,9表示不下雨;再以每三個隨機數(shù)作為一組,代表這三天的下雨情況.經隨機模擬試驗產生了如下20組隨機數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,這三天中恰有兩天下雨的概率近似為( )
A. 0.30 B. 0.35 C. 0.40 D. 0.50
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com