【題目】如圖,已知三棱柱的側棱垂直于底面,,,點分別是的中點.

1)證明:平面

2)設,當為何值時,平面,試證明你的結論.

【答案】1)見解析(2)當時,⊥平面.見解析

【解析】

1)取的中點,連接,由面面平行判定定理可得平面∥平面,進而證明平面;

2)連接,可設,則,要使⊥平面,只需即可,由線面垂直的判定定理可得的方程,解方程即可求得的值.

1)證明:取的中點,連接.如下圖所示:

因為點分別是的中點,

所以N,,

,

所以∥平面∥平面,

所以平面∥平面,因為平面,

所以∥平面.

2)連接,如下圖所示:

,則,

由題意知,,

∵三棱柱的側棱垂直于底面,

∴平面⊥平面

,點的中點,

⊥平面

.

要使⊥平面,只需即可,

,,

,

∴當時,⊥平面.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓截直線所得的線段的長度為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線與橢圓交于兩點,點是橢圓上的點,是坐標原點,若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)有兩個極值點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|xa|-x(a>0).

(1)若a=3,解關于x的不等式f(x)<0;

(2)若對于任意的實數(shù)x,不等式f(x)-f(xa)<a2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點

1)求橢圓的方程;

2)設不過原點的直線與該橢圓交于兩點,滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位共有老、中、青職工430,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,一個長軸頂點在直線上,若直線與橢圓交于,兩點,為坐標原點,直線的斜率為,直線的斜率為.

1)求該橢圓的方程.

2)若,試問的面積是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,已知直線l1的參數(shù)方程為t為參數(shù)),直線l2的參數(shù)方程為t為參數(shù)),其中α∈(0),以原點O為點x軸的非負半軸為極軸,取相同的單位長度建立極坐標系,曲線C的極坐標方程為ρ2sinθ0

1)寫出直線l1的極坐標方程和曲線C的直角坐標方程;

2)設直線l1,l2分別與曲線C交于點A,B(非坐標原點)求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知函數(shù)fx=,其中a>0.

)若a=1,求曲線y=fx)在點(2,f2))處的切線方程;

)若在區(qū)間上,fx>0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案