【題目】某單位共有老、中、青職工430,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為

A. 9 B. 18 C. 27 D. 36

【答案】B

【解析】試題分析:根據(jù)條件中職工總數(shù)和青年職工人數(shù),以及中年和老年職工的關(guān)系列出方程,解出老年職工的人數(shù),根據(jù)青年職工在樣本中的個數(shù),算出每個個體被抽到的概率,用概率乘以老年職工的個數(shù),得到結(jié)果.

設(shè)老年職工有x人,中年職工人數(shù)是老年職工人數(shù)的2倍,則中年職工有2x,x+2x+160=430,x=90,即由比例可得該單位老年職工共有90人,在抽取的樣本中有青年職工32人,每個個體被抽到的概率是

用分層抽樣的比例應(yīng)抽取×90=18人.故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為方便市民休閑觀光,市政府計(jì)劃在半徑為200,圓心角為的扇形廣場內(nèi)(如圖所示),沿邊界修建觀光道路,其中、分別在線段、,、兩點(diǎn)間距離為定長

(1)當(dāng)求觀光道段的長度;

(2)為提高觀光效果,應(yīng)盡量增加觀光道路總長度,試確定圖中兩點(diǎn)的位置,使觀光道路總長度達(dá)到最長并求出總長度的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中這個數(shù)中取個數(shù)組成遞增等差數(shù)列,所有可能的遞增等差數(shù)列這個數(shù)記為.

(1)當(dāng)時,寫出所有可能的遞增等差數(shù)列及的值;

(2)求;

(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù),且曲線在坐標(biāo)原點(diǎn)處的切線相同.

1的最小值;

2時,恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的圓錐中,OP是圓錐的高,AB是底面圓的直徑,點(diǎn)C是弧AB的中點(diǎn),E是線段AC的中點(diǎn),D是線段PB的中點(diǎn),且PO=2,OB=1

(1)試在PB上確定一點(diǎn)F,使得EFCOD,并說明理由;

(2)求點(diǎn)到面COD的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直三棱柱中,,是棱上的一點(diǎn),分別為的中點(diǎn).

1求證:平面;

2當(dāng)的中點(diǎn)時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PAB是正三角形,四邊形ABCD是矩形,且平面PAB平面ABCD,PA=2,PC=4.

(Ⅰ)若點(diǎn)E是PC的中點(diǎn),求證:PA平面BDE;

(Ⅱ)若點(diǎn)F在線段PA上,且FA=λPA,當(dāng)三棱錐B﹣AFD的體積為時,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙兩煤礦每年的產(chǎn)量分別為200萬噸和300萬噸,需經(jīng)過東車站和西車站兩個車站運(yùn)往外地,東車站每年最多能運(yùn)280萬噸煤,西車站每年最多能運(yùn)360萬噸煤,甲煤礦運(yùn)往東車站和西車站的運(yùn)費(fèi)價(jià)格分別為1/噸和1.5/噸,乙煤礦運(yùn)往東車站和西車站的運(yùn)費(fèi)價(jià)格分別為0.8/噸和1.6/噸.要使總運(yùn)費(fèi)最少,煤礦應(yīng)怎樣編制調(diào)運(yùn)方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:

組號

第一組

第二組

第三組

第四組

第五組

分組

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;

(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?

查看答案和解析>>

同步練習(xí)冊答案