在△ABC中,點(diǎn)M是BC的中點(diǎn),△AMC的三邊長是連續(xù)三個(gè)正整數(shù),且tan∠C=cot∠BAM.
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)求∠BAC的余弦值.
分析:(Ⅰ)假設(shè)∠BAM=α,∠MAC=β,根據(jù)正弦定理可找到α,β與B,C的正弦之間的關(guān)系,進(jìn)而再由誘導(dǎo)公式可確定α與β的關(guān)系.
(Ⅱ)先設(shè)出3個(gè)連續(xù)的整數(shù),再由勾股定理確定關(guān)系,根據(jù)余弦定理和二倍角公式可求出角BAC的余弦值.
解答:精英家教網(wǎng)解:(Ⅰ)設(shè)∠BAM=α,∠MAC=β,
則由tanC=cotα得α+C=90°∴β+B=90°
△ABM中,由正弦定理得
BM
sinα
=
AM
sinB
,即
sinB
sinα
=
AM
MB

同理得
sinC
sinβ
=
AM
MC
,
∵M(jìn)B=MC,∴
sinB
sinα
=
sinC
sinβ

∴sinαsinC=sinβsinB∵α+C=90°,β+B=90°,∴sinαcosα=sinβcosβ
即sin2α=sin2β,∴α=β或α+β=90°
當(dāng)α+β=90°時(shí),AM=
1
2
BC=MC
,
與△AMC的三邊長是連續(xù)三個(gè)正整數(shù)矛盾,
∴α=β,∴∠B=∠C,∴△ABC是等腰三角形.

(Ⅱ)在直角三角形AMC中,設(shè)兩直角邊分別為n,n-1,斜邊為n+1,
由(n+1)2=n2+(n-1)2得n=4,
由余弦定理或二倍角公式得cos∠BAC=
7
25

cos∠BAC=-
7
25
點(diǎn)評:本題主要考查正弦定理、余弦定理的應(yīng)用.三角函數(shù)部分公式比較多,一定要強(qiáng)化記憶.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,點(diǎn)M是BC的中點(diǎn),點(diǎn)N在邊AC上,且AN=2NC,AM與BN相交于點(diǎn)P,則點(diǎn)P分有向線段
AM
所成的比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,點(diǎn)M是BC的中點(diǎn),點(diǎn)N在邊AC上,且AN=2NC,AM與BN相交于點(diǎn)P,求AP:PM的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,點(diǎn)M是BC的中點(diǎn),點(diǎn)N在AC上,且AN=2NC,AM與BN相交于點(diǎn)P,求AP∶PM的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江西省上饒市廣豐中學(xué)高三(上)第二次段考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

如圖,在△ABC中,點(diǎn)M是BC的中點(diǎn),點(diǎn)N在邊AC上,且AN=2NC,AM與BN相交于點(diǎn)P,則點(diǎn)P分有向線段所成的比為   

查看答案和解析>>

同步練習(xí)冊答案