已知f(x)是定義在[-1,1]上的增函數(shù),解不等式f(
x-1
x
)<f(
1
2
).
考點:函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得
-1≤
x-1
x
≤1
x-1
x
1
2
,由此求得不等式的解集.
解答: 解:由題意可得
-1≤
x-1
x
≤1
x-1
x
1
2
,即
2x-1
x
≥0
-1
x
≤0
x-2
2x
<0
,解得0<x≤
1
2
,故不等式的解集為{x|0<x≤
1
2
 }.
點評:本題主要考查函數(shù)的定義域和單調(diào)性,分式不等式的解法,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用秦九韶算法計算當(dāng)x=0.4時,多項式f(x)=3x6+4x5+6x3+7x2+1的值時,需要做乘法運算的次數(shù)是( 。
A、6B、5C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+x2,g(x)=alnx(a≠0,a∈R).
(1)若對任意x∈[1,+∞),f(x)+g(x)≥-x3+(a+2)x恒成立,求實數(shù)a的取值范圍;
(2)證明:對n∈N*,不等式
1
In(n+1)
+
1
In(n+2)
+…+
1
In(n+2013)
2013
n(n+2013)
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,F(xiàn)1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)的左、右兩個焦點,A,B為兩個頂點,已知橢圓C上的點(1,
3
2
)到焦點F1,F(xiàn)2兩點的距離之和為4.
(1)求橢圓C的方程和焦點坐標(biāo);
(2)過橢圓C的焦點F2作AB的平行線交橢圓于P,Q兩點,求△F1PQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A、B是全集U={1,2,3,4,5,6,7,8,9}的子集,且A∩B={2},(∁UA)∩(∁UB)={1,9},(∁UA)∩B={4,6,8},求集合A、B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2sin(2x+
π
6
)的周期、單調(diào)遞減區(qū)間及當(dāng)x∈[0,
π
2
]時函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

PM2.5是指懸浮在空氣中的空氣動力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,根據(jù)現(xiàn)行國家標(biāo)準(zhǔn)GB3095-2012,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75毫克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).從某自然保護(hù)區(qū)2012年全年每天的PM2.5監(jiān)測值數(shù)據(jù)中隨機地抽取10天的數(shù)據(jù)作為樣本,監(jiān)測值頻數(shù)如表所示:
PM2.5日均值
(微克/立方米)
[25,35](35,45](45,55](55,65](65,75](75,85]
頻數(shù)311113
(1)從這10天的PM2.5日均值監(jiān)測數(shù)據(jù)中,隨機抽取3天,求恰有1天空氣質(zhì)量達(dá)到一級的概率;
(2)從這10天的數(shù)據(jù)中任取3天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列;
(3)以這10天的PM2.5日均值來估計一年的空氣質(zhì)量狀況,則一年(按366天算)中平均有多少天的空氣質(zhì)量達(dá)到一級或二級.(精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)計算法求
1
1×2
+
1
2×3
+
1
3×4
+…+
1
49×50
的值,寫出求此算法的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,已知an=
n2+n-1
3
(n∈N*).
(1)寫出a10,an2;   
(2)79
2
3
是否是數(shù)列中的項?若是,是第幾項?

查看答案和解析>>

同步練習(xí)冊答案