由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運(yùn)算法則:
①m•n=n•m類比得到a•b=b•a;
②(m+n)•t=m•t+n•t類比得到(a+b)•c=a•c+b•c;
③(m•n)t=m(n•t) 類比得到(a•b)c=a(b•c);
④t≠0,m•t=r•t⇒m=r類比得到p≠0,a•p=b•p⇒a=b;
⑤|m•n|=|m|•|n|類比得到|a•b|=|a|•|b|;
ac
bc
=
a
b
類比得到
a
c
b
c
=
a
b

以上式子中,類比得到的結(jié)論正確的序號是
 
考點(diǎn):類比推理
專題:探究型,推理和證明
分析:利用向量的數(shù)量積滿足交換律和分配律,但是不滿足消去律和結(jié)合律,即可得到結(jié)論.
解答: 解:∵向量的數(shù)量積滿足交換律,∴①正確;
∵向量的數(shù)量積滿足分配律,∴②正確;
∵向量的數(shù)量積不滿足結(jié)合律,∴③不正確;
∵向量的數(shù)量積不滿足消去律,∴④不正確;
由向量的數(shù)量積公式,可知⑤不正確;
∵向量的數(shù)量積不滿足消去律,∴⑥不正確
綜上知,正確的個數(shù)為2個
故答案為:①②.
點(diǎn)評:本題考查類比推理的應(yīng)用,利用向量的數(shù)量積滿足交換律和分配律,但是不滿足消去律和結(jié)合律是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

36的所有正約數(shù)之和可按如下方法得到:因為36=22×32,所以36的所有正約數(shù)之和為(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,類比上述求解方法,可求得10000的所有正約數(shù)之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡:
(a
2
3
b-1)-
1
2
a
1
2
b
1
3
6a•b5
;
(2)已知lg2=a,lg3=b,試用a,b表示log125.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sin(ωx+φ),(ω>0,-
π
2
<φ<
π
2
)的部分圖象如圖所示,則函數(shù)f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
25
-
y2
9
=1的兩個焦點(diǎn)為F1,F(xiàn)2,P為雙曲線上的點(diǎn),|PF1|=12,|PF2|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足a1=1,an=
an-1
1+an-1
,則該數(shù)列的第5項等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)h為∠A所對的邊BC=a上的高,則三角形面積S=
1
2
•a•h,由此類比:空間中,
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
AB
=(1,2),
AC
=(2,y),且
AB
AC
=0,則2
AB
+3
AC
=(  )
A、(8,1)
B、(8,7)
C、(-8,8)
D、(16,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M=|x|0<x<5,x∈N},N={x|x2=4},下列結(jié)論成立的是( 。
A、N⊆M
B、M∪N=M
C、M∪N=N
D、M∩N={2}

查看答案和解析>>

同步練習(xí)冊答案