已知直線,拋物線上一動點P到直線的距離之和的最小值是(    )

A.2           B.3 C.          D.

 

【答案】

A

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(08年泰安市模擬)(12分)

       已知橢圓是拋物

的一條切線。

   (I)求橢圓的方程;

   (II)過點的動直線L交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點T,使得以AB為直徑的圓恒過點T?若存在,求出點T的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆浙江省嘉興一中高三高考模擬試題文數(shù) 題型:解答題

(本題滿分15分)如圖,已知直線與拋物線和圓都相切,的焦點.
(1)求的值;(2)設(shè)上的一動點,以為切點作拋物線的切線,直線軸于點,以為鄰邊作平行四邊形,證明:點在一條定直線上;
(3)在(2)的條件下,記點所在的定直線為,直線軸交點為,連接交拋物線兩點,求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省高二10月階段性檢測數(shù)學試卷(解析版) 題型:填空題

給出下列命題,其中正確命題的序號是           (填序號)。

(1)已知橢圓兩焦點為,則橢圓上存在六個不同點,使得為直角三角形;

(2)已知直線過拋物線的焦點,且與這條拋物線交于兩點,則的最小值為2;

(3)若過雙曲線的一個焦點作它的一條漸近線的垂線,垂足為為坐標原點,則;

(4)已知⊙則這兩圓恰有2條公切線。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省臺州市高三第一學期第二次統(tǒng)練試題文科數(shù)學 題型:解答題

(本題滿分15分)如圖,已知直線與拋物線和圓都相切,FC1的焦點.

(1)求ma的值;

(2)設(shè)AC1上的一動點,以A為切點作拋物線C1的切線l,直線ly軸于點B,以FA、FB為鄰邊作平行四邊形FAMB,證明:點M在一條定直線上;

(3)在(2)的條件下,記點M點所在的定直線為l2,直線l2y軸交點為N,連接MF交拋物線C1P、Q兩點,求△NPQ的面積S的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省高三高考模擬試題理數(shù) 題型:解答題

(本題滿分15分)如圖,已知直線與拋物線和圓都相切,的焦點.

(1)求的值;

(2)設(shè)上的一動點,以為切點作拋物線的切線,直線軸于點,以為鄰邊作平行四邊形,證明:點在一條定直線上;

(3)在(2)的條件下,記點所在的定直線為,直線軸交點為,連接交拋物線兩點,求的面積的取值范圍.

 

 

查看答案和解析>>

同步練習冊答案