.橢圓上一點到右準線的距離為,則該點到左焦點的距離為(  )
A. B. C.D.
A
橢圓上一點P到右準線的距離為,所以P到右焦點的距離為所以P點到左焦點的距離為10-2=8.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右頂點分別為,,為短軸的端點,△的面積為,離心率是
(Ⅰ)求橢圓的方程;
(Ⅱ)若點是橢圓上異于,的任意一點,直線,與直線分別交于兩點,證明:以為直徑的圓與直線相切于點 (為橢圓的右焦點).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的右焦點到直線的距離是
A. B.  C.1  D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)在平面直角坐標系xOy中,點P到兩點的距離之和等于4,設(shè)點P的軌跡為C。
(1)求出C的軌跡方程;
(2)設(shè)直線與C交于A、B兩點,k為何值時?       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)已知兩點,曲線上的動點滿足,直線與曲線交于另一點
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)已知橢圓的焦點是,又過點
(1)求橢圓的離心率;
(2)又設(shè)點在這個橢圓上,且,求的余弦的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

中,滿足,.若一個橢圓恰好以為一個焦點,另一個焦點在線段上,且,均在此橢圓上,則該橢圓的離心率為      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知方向向量為的直線l過橢圓的焦點以及點(0,),直線l與橢圓C交于 A 、B 兩點,且A、B兩點與另一焦點圍成的三角形周長為。
(1)求橢圓C的方程
(2)過左焦點且不與x軸垂直的直線m交橢圓于M、N兩點,
(O坐標原點),求直線m的方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓,直線過橢圓左焦點且不與軸重合, 與橢圓交于,兩點,當軸垂直時,,若點
(1)求橢圓的方程;
(2)直線繞著旋轉(zhuǎn),與圓交于兩點,若,求的面積 的取值范圍(為橢圓的右焦點)。

查看答案和解析>>

同步練習冊答案