已知方向向量為的直線l過(guò)橢圓的焦點(diǎn)以及點(diǎn)(0,),直線l與橢圓C交于 A 、B 兩點(diǎn),且A、B兩點(diǎn)與另一焦點(diǎn)圍成的三角形周長(zhǎng)為。
(1)求橢圓C的方程
(2)過(guò)左焦點(diǎn)且不與x軸垂直的直線m交橢圓于M、N兩點(diǎn),
(O坐標(biāo)原點(diǎn)),求直線m的方程
(1)                 (2)   
本試題主要是考查了橢圓方程的求解和直線與橢圓位置關(guān)系的運(yùn)用。利用橢圓的幾何性質(zhì),來(lái)表示得到a,b,c的值,從而解得方程,然后設(shè)出直線方程,聯(lián)立方程組,借助于韋達(dá)定理,運(yùn)用代數(shù)的方法來(lái)表示坐標(biāo),同時(shí)借助于題目中向量的關(guān)系式,得到坐標(biāo)的關(guān)系,消去坐標(biāo),得參數(shù)的關(guān)系式,進(jìn)而求解得到。解:(1)  
直線與x軸交點(diǎn)即為橢圓的右焦點(diǎn)  ∴c=2
由已知⊿周長(zhǎng)為,則4a=,即,所以
故橢圓方程為                  
(2)橢圓的左焦點(diǎn)為,則直線m的方程可設(shè)為
代入橢圓方程得:
設(shè)    

所以,,即  

原點(diǎn)O到m的距離,則
解得   
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓上一點(diǎn)M到直線x+2y-10=0的距離的最小值為(    )
A.2B.C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.橢圓上一點(diǎn)到右準(zhǔn)線的距離為,則該點(diǎn)到左焦點(diǎn)的距離為(  )
A. B. C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)(注意:在試題卷上作答無(wú)效)
已知橢圓的左、右焦點(diǎn)分別為,若以為圓心,為半徑作圓,過(guò)橢圓上一點(diǎn)作此圓的切線,切點(diǎn)為,且的最小值不小于為
(1)求橢圓的離心率的取值范圍;
(2)設(shè)橢圓的短半軸長(zhǎng)為,圓軸的右交點(diǎn)為,過(guò)點(diǎn)作斜率為的直線與橢圓相交于兩點(diǎn),若,求直線被圓截得的弦長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓長(zhǎng)軸上有一點(diǎn)到兩個(gè)焦點(diǎn)之間的距離分別為:3+2,3-2
(1)求橢圓的方程;
(2)如果直線x=t(teR)與橢圓相交于A,B,若C(-3,0),D(3,0),證明直線CA與直線
BD的交點(diǎn)K必在一條確定的雙曲線上;
(3)過(guò)點(diǎn)Q(1,0 )作直線l(與x軸不垂直)與橢圓交于M,N兩點(diǎn),與y軸交于點(diǎn)R,、若
,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為F1和F2 ,以F1、F2為直徑的圓經(jīng)過(guò)點(diǎn)M(0,b).(1)求橢圓的方程;(2)設(shè)直線l與橢圓相交于A,B兩點(diǎn),且.求證:直線l在y軸上的截距為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓(a>b>0),點(diǎn)在橢圓上。
(I)求橢圓的離心率。
(II)設(shè)A為橢圓的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。
【考點(diǎn)定位】本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點(diǎn)間距離公式等基礎(chǔ)知識(shí). 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運(yùn)算求解能力、綜合分析和解決問(wèn)題的能力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在橢圓上有一點(diǎn)M,是橢圓的兩個(gè)焦點(diǎn),若 ,則橢圓離心率的范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓與雙曲線有相同的焦點(diǎn), 則m的值為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案