已知過(guò)點(diǎn)(0,2)的直線與拋物線y2=4x交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),計(jì)算的值,由此歸納一條與拋物線有關(guān)的性質(zhì),使得上述計(jì)算結(jié)果是性質(zhì)的一個(gè)特例:
過(guò)(0,2)的直線與拋物線y2=4x交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),則    ;
過(guò)(0,2)的直線與拋物線y2=2px(p>0)交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),則    ;
過(guò)(0,b)的直線與拋物線y2=mx(m≠0)交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),則   
【答案】分析:過(guò)(0,2)的直線與拋物線y2=4x交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),可令直線方程為y=kx+2,則易得聯(lián)立直線與拋物線的方程后,易得;然后根據(jù)歸納推理的辦法,由此推斷出過(guò)(0,2)的直線與拋物線y2=2px(p>0)交于不同的兩點(diǎn)A(x1,y1),B(x2,y2)時(shí),滿足的性質(zhì),及過(guò)(0,b)的直線與拋物線y2=mx(m≠0)交于不同的兩點(diǎn)A(x1,y1),B(x2,y2)時(shí),滿足的性質(zhì).
解答:解:若過(guò)(0,2)的直線斜率不存在或k=0,則直線與拋物線只有一個(gè)交點(diǎn)不滿足要求;
若過(guò)(0,2)的直線斜率存在且不為0,則可設(shè)y=kx+2
(1)又因?yàn)锳,B兩點(diǎn)是直線與拋物線y2=4x的交點(diǎn),則


由韋達(dá)定理得:
,且

(2)又因?yàn)锳,B兩點(diǎn)是直線與拋物線y2=2px(p>0)的交點(diǎn),則


由韋達(dá)定理得:
,且

(3)由此推斷:過(guò)(0,b)的直線與拋物線y2=mx(m≠0)交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),則
故答案為:,
點(diǎn)評(píng):歸納推理的一般步驟是:(1)通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過(guò)點(diǎn)(0,2)的直線與拋物線y2=4x交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),計(jì)算
1
y1
+
1
y2
的值,由此歸納一條與拋物線有關(guān)的性質(zhì),使得上述計(jì)算結(jié)果是性質(zhì)的一個(gè)特例:
過(guò)(0,2)的直線與拋物線y2=4x交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),則
 
;
過(guò)(0,2)的直線與拋物線y2=2px(p>0)交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),則
 

過(guò)(0,b)的直線與拋物線y2=mx(m≠0)交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),則
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過(guò)點(diǎn)(0,2)的直線與拋物線y2=4x交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),計(jì)算
1
y1
+
1
y2
的值,由此歸納一條與拋物線有關(guān)的性質(zhì),使得上述計(jì)算結(jié)果是性質(zhì)的一個(gè)特例:
根據(jù)回答的層次給分
過(guò)(0,2)的直線與拋物線y2=4x交與不同的兩點(diǎn)A(x1,y1),B(x2,y2),則
1
y1
+
1
y2
=
1
2

過(guò)(0,2)的直線與拋物線y2=2px(p>0)交與不同的兩點(diǎn)A(x1,y1),B(x2,y2),則
1
y1
+
1
y2
=
1
2
;
過(guò)(0,b)(b≠0)的直線與拋物線y2=mx(m≠0)交與不同的兩點(diǎn)A(x1,y1),B(x2,y2),則
1
y1
+
1
y2
=
1
2
根據(jù)回答的層次給分
過(guò)(0,2)的直線與拋物線y2=4x交與不同的兩點(diǎn)A(x1,y1),B(x2,y2),則
1
y1
+
1
y2
=
1
2

過(guò)(0,2)的直線與拋物線y2=2px(p>0)交與不同的兩點(diǎn)A(x1,y1),B(x2,y2),則
1
y1
+
1
y2
=
1
2

過(guò)(0,b)(b≠0)的直線與拋物線y2=mx(m≠0)交與不同的兩點(diǎn)A(x1,y1),B(x2,y2),則
1
y1
+
1
y2
=
1
2

(根據(jù)回答的層次給分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知過(guò)點(diǎn)(0,2)的直線與拋物線y2=4x交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),計(jì)算數(shù)學(xué)公式的值,由此歸納一條與拋物線有關(guān)的性質(zhì),使得上述計(jì)算結(jié)果是性質(zhì)的一個(gè)特例:________
(根據(jù)回答的層次給分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知過(guò)點(diǎn)(0,2)的直線與拋物線y2=4x交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),計(jì)算
1
y1
+
1
y2
的值,由此歸納一條與拋物線有關(guān)的性質(zhì),使得上述計(jì)算結(jié)果是性質(zhì)的一個(gè)特例:______
(根據(jù)回答的層次給分)

查看答案和解析>>

同步練習(xí)冊(cè)答案