2.函數(shù)f(x)=$\frac{1}{2}{x^2}+{e^x}-x{e^x}$,x∈[-2,+∞)的單調(diào)減調(diào)區(qū)間是[-2,+∞).

分析 求出導(dǎo)數(shù)f′(x),判斷f′(x)的符號(hào)得出f(x)的單調(diào)性.

解答 解:f′(x)=x+ex-(ex+xex)=x-xex=x(1-ex),
當(dāng)-2≤x≤0時(shí),f′(x)≤0,當(dāng)x>0時(shí),f′(x)<0,
∴f′(x)≤0在[-2,+∞)上恒成立,
∴f(x)在[-2,+∞)上單調(diào)遞減,
故答案為:[-2,+∞).

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.《數(shù)學(xué)萬(wàn)花筒》第7頁(yè)中談到了著名的“四色定理”.問(wèn)題起源于1852年的倫敦大學(xué)學(xué)院畢業(yè)生弗朗西斯•加斯里.他給自己的弟弟弗萊德里克寫的信中提到:“可以使用四種(或更少)顏色為平面上畫(huà)出的每張地圖著色,使任何相鄰的兩個(gè)地區(qū)的邊界線具有不同的顏色嗎?”回答他這個(gè)問(wèn)題用了124年,但簡(jiǎn)單的圖形我們能用逐一列舉的方法解決.若用紅、黃、藍(lán)、綠四種顏色給右邊的地圖著色,假定區(qū)域①已著紅色,區(qū)域②已著黃色,則剩余的區(qū)域③④共有2種著色方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知實(shí)數(shù)x,y滿足方程2x+y+5=0,那么$\sqrt{{x^2}+{y^2}-4x-2y+5}$的最小值為(  )
A.2$\sqrt{10}$B.$\sqrt{10}$C.2$\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知△ABC中,A=30°,C=105°,b=4,則a=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.條件“x=1”是條件“x2-1=0”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知x>$\frac{1}{2}$,則函數(shù)y=$\frac{{x}^{2}+x+1}{2x-1}$的最小值為$\frac{\sqrt{7}}{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.求值$C_n^{4-n}+C_{n+1}^{9-n}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=2sin2x.將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象.
(1)求g(x)的單調(diào)增區(qū)間;
(2)已知區(qū)間[m,n](m,n∈R且m<n)滿足:y=g(x)在[m,n]上至少含有30個(gè)零點(diǎn),在所有滿足上述條件的[m,n]中,求n-m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(-1)^{n}sin\frac{πx}{2}+2n,x∈[2n,2n+1)}\\{(-1)^{n+1}sin\frac{πx}{2}+2n+2,x∈[2n+1,2n+2)}\end{array}\right.$,n∈N,若數(shù)列{an}滿足am=f(m)(m∈N*),數(shù)列{an}的前m項(xiàng)和為Sm,則S105-S96=(  )
A.909B.910C.911D.912

查看答案和解析>>

同步練習(xí)冊(cè)答案