已知e是自然對數(shù)的底數(shù),函數(shù)f(x)=
ax2
ex
(a∈R,且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a>0時,函數(shù)f(x)的極大值為
1
e
,求a的值.
考點:利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求出函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a>0時,根據(jù)函數(shù)f(x)的極大值為
1
e
,建立方程關(guān)系,即可求a的值.
解答: 解:(Ⅰ)函數(shù)的定義域為R.求導(dǎo)得f′(x)=
a(2x-x2)
ex
,
當(dāng)a>0時,令f′(x)>0,解得0<x<2,此時函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,2);
當(dāng)a<0時,令f′(x)>0,解得x<0或x>2,此時函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,0),(2,+∞).
(Ⅱ)由(Ⅰ)可知,當(dāng)a>0時,函數(shù)f(x)在區(qū)間(-∞,0),(2,+∞)上單調(diào)遞減,
在(0,2)上單調(diào)遞增,
于是當(dāng)x=2時,函數(shù)f(x)取到極大值,極大值為
4a
e2
=
1
e
,
故a的值為
e
4
點評:本題主要考查函數(shù)單調(diào)性和極值和導(dǎo)數(shù)之間的關(guān)系,要求熟練掌握導(dǎo)數(shù)的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知cos2θ=
3
5
,則sin4θ-cos4θ的值為(  )
A、
4
5
B、
3
5
C、-
3
5
D、-
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=
3
5
,α為第四象限角,則tanα=( 。
A、1
B、-1
C、
3
4
D、-
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex-1-ax,g(x)=xf(x)
(Ⅰ)若a=
1
2
,求g(x)的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)x≥0時f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有限集合中元素的個數(shù),我們可以一一數(shù)出來,而對于元素個數(shù)無限的集合,如,對于集合A={1,2,3,…,n,…}與B={2,4,6,…,2n,…},我們無法數(shù)出集合中元素的個數(shù),但可以比較這兩個集合中元素個數(shù)的多少,你能設(shè)計一種比較這兩個集合中元素個數(shù)多少的方法嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(x3-ax)ln(x2+1-a)(a∈R)
(Ⅰ)若方程f(x)=0有3個不同的根,求實數(shù)a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,是否存在實數(shù)a,使得f(x)在(0,1)上恰有兩個極值點x1,x2,且滿足x2=2x1,若存在,求實數(shù)a的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
1-x
1+x

(1)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)設(shè)p≥q>0,求證:ln
p
-ln
q
p-q
p+q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-alnx-1(a∈R),g(x)=
xeb
ex
(b∈R),且函數(shù)g(x)的最大值為1,
(1)求b的值;
(2)若函數(shù)f(x)有唯一零點,且對任意的x≥1,不等式f(x)-g(x)≥a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是否存在過點P(4,0)的直線與圓C:x2+y2=4交于A,B兩點,使以A,B為直徑的圓恰好過原點,若存在,求出直線的方程.若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案