【題目】過直線上一動點不在軸上)作焦點為的拋物線的兩條切線, 為切點,直線分別與軸交于點.

(Ⅰ)求證: ,并求的外接圓面積的最小值;

(Ⅱ)求證:直線恒過一定點。

【答案】(Ⅰ)證明見解析,外接圓面積最小值為: .(Ⅱ)證明見解析.

【解析】試題分析:(1)寫出拋物線方程,聯(lián)立直線和拋物線的方程,得到關于的一元二次方程,利用判別式為0判定兩直線垂直,進而求得外接圓的最小值(2)先得到直線方程,再代點確定點的關系,進而得到直線的方程,再驗證恒過定點 .

試題解析:( I )

,則直線,與聯(lián)立,得:

因為相切,所以,得: ,又,所以 ,同理: ,所以的外接圓,又因為: ,所以的外接圓面積最小值為: .

Ⅱ)設點,

易知:直線方程為: ,

代入點坐標得: ,同理:

所以直線方程為: ,又點滿足:

所以直線恒過定點

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一臺機器按不同的轉速生產(chǎn)出來的某機械零件有一些會有缺點,每小時生產(chǎn)有缺點零件的多少,隨機器的運轉的速度而變化,具有線性相關關系,下表為抽樣試驗的結果:

轉速x(轉/秒)

8

10

12

14

16

每小時生產(chǎn)有缺點的零件數(shù)y(件)

5

7

8

9

11

(1)如果y對x有線性相關關系,求回歸方程;
(2)若實際生產(chǎn)中,允許每小時生產(chǎn)的產(chǎn)品中有缺點的零件最多有10個,那么機器的運轉速度應控制在設么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,圓的極坐標方程為.若以極點為原點,極軸所在直線為軸建立平面直角坐標系.

)求圓的參數(shù)方程;

)在直角坐標系中,點是圓上動點,試求的最大值,并求出此時點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面莖葉圖表示的是甲、乙兩人在5次綜合測評中的成績(成績?yōu)檎麛?shù),滿分為100),其中一個數(shù)字被污損,則乙的平均成績不低于甲的平均成績的概率為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從一批土雞蛋中,隨機抽取n個得到一個樣本,其重量(單位:克)的頻數(shù)分布表如表:

分組(重量)

[80,85)

[85,90)

[90,95)

[95,100]

頻數(shù)(個)

10

50

m

15

已知從n個土雞蛋中隨機抽取一個,抽到重量在在[90,95)的土雞蛋的根底為
(1)求出n,m的值及該樣本的眾數(shù);
(2)用分層抽樣的方法從重量在[80,85)和[95,100)的土雞蛋中共抽取5個,再從這5個土雞蛋中任取2 個,其重量分別是g1 , g2 , 求|g1﹣g2|≥10概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}滿足:a2=3,a5﹣2a3+1=0.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足:{bn}=(﹣1)nann(+n∈N*),求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平行六面體ABCD﹣A1B1C1D1中,側棱B1B長為3,底面是邊長為2的菱形,∠A1AB=120°,∠A1AD=60°,點E在棱B1B上,則AE+C1E的最小值為( 。

A.
B.5
C.2
D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時的耗油量y(升)關于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:y=(0<x≤120).已知甲、乙兩地相距100千米.
(Ⅰ)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(Ⅱ)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(I)討論函數(shù)的單調性,并證明當時, ;

(Ⅱ)證明:當時,函數(shù)有最小值,設最小值為,求函數(shù)的值域.

查看答案和解析>>

同步練習冊答案