【題目】如圖所示,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,BC=CC1 , M、N分別為BB1、A1C1的中點(diǎn).
(Ⅰ)求證:CB1⊥平面ABC1;
(Ⅱ)求證:MN∥平面ABC1 .
【答案】解:(Ⅰ)在直三棱柱ABC﹣A1B1C1中,
側(cè)面BB1C1C⊥底面ABC,且側(cè)面BB1C1C∩底面ABC=BC,
∵∠ABC=90°,即AB⊥BC,
∴AB⊥平面BB1C1
∵CB1平面BB1C1C,∴AB⊥CB1.
∵BC=CC1,CC1⊥BC,∴BCC1B1是正方形,
∴CB1⊥BC1,
∵AB∩BC1=B,∴CB1⊥平面ABC1.
(Ⅱ)取AC1的中點(diǎn)F,連BF、NF.
在△AA1C1中,N、F是中點(diǎn),
∴NF AA1,
又∵正方形BCC1B1中BM AA1,
∴NF∥BM,且NF=BM
故四邊形BMNF是平行四邊形,可得MN∥BF,
∵BF面ABC1,MN平面ABC1,
∴MN∥面ABC1
【解析】(I)根據(jù)直三棱柱的性質(zhì),利用面面垂直性質(zhì)定理證出AB⊥平面BB1C1,得出AB⊥CB1.正方形BCC1B1中,對(duì)角線CB1⊥BC1,由線面垂直的判定定理可證出CB1⊥平面ABC1;(II)取AC1的中點(diǎn)F,連BF、NF,利用三角形中位線定理和平行四邊形的性質(zhì),證出EF∥BM且EF=BM,從而得到BMNF是平行四邊形,可得MN∥BF,結(jié)合線面平行判定定理即可證出MN∥面ABC1.
【考點(diǎn)精析】關(guān)于本題考查的直線與平面平行的判定和直線與平面垂直的判定,需要了解平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重,大氣污染可引起心悸、呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對(duì)入院50人進(jìn)行了問(wèn)卷調(diào)查,得到如下的列聯(lián)表.
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 | 5 | ||
女 | 10 | ||
合計(jì) | 50 |
已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為 ,
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說(shuō)明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3名進(jìn)行其它方面的排查,記選出患胃病的女性人數(shù)為ξ,求ξ的分布列、數(shù)學(xué)期望以及方差.
下面的臨界值表僅供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= ﹣2sinπx(﹣3≤x≤5)的所有零點(diǎn)之和等于( )
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A,B,C三點(diǎn)滿足 = + . (Ⅰ)求證:A,B,C三點(diǎn)共線;
(Ⅱ)已知A(1,cosx),B(1+sinx,cosx),x∈[0, ],f(x)= ﹣(2m2+ )| |的最小值為 ,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B,C的坐標(biāo)分別為(﹣ ,0),( ,0),(m,n),G,O′,H分別為△ABC的重心,外心,垂心.
(1)寫出重心G的坐標(biāo);
(2)求外心O′,垂心H的坐標(biāo);
(3)求證:G,H,O′三點(diǎn)共線,且滿足|GH|=2|OG′|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣ . (Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)用函數(shù)單調(diào)性的定義證明:f(x)在(0,+∞)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(﹣2,0),B(2,0),P(x0 , y0)是直線y=x+3上任意一點(diǎn),以A,B為焦點(diǎn)的橢圓過(guò)P,記橢圓離心率e關(guān)于x0的函數(shù)為e(x0),那么下列結(jié)論正確的是( )
A.e與x0一一對(duì)應(yīng)
B.函數(shù)e(x0)無(wú)最小值,有最大值
C.函數(shù)e(x0)是增函數(shù)
D.函數(shù)e(x0)有最小值,無(wú)最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ax2﹣(2a+1)x+2lnx(a∈R). (Ⅰ)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=x2﹣2x,若對(duì)任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com