已知等比數(shù)列{}中,各項(xiàng)都是正數(shù),且a1, a3,2a2成等差數(shù)列,則=(    )
A.1-B.1+C.2D.-1
B

試題分析:由成等差數(shù)列得: ,即,從而,解得,,又因?yàn)楦黜?xiàng)都是正數(shù),故,而,故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列滿足:,
(Ⅰ)求的通項(xiàng)公式及前項(xiàng)和;
(Ⅱ)已知是等差數(shù)列,為前項(xiàng)和,且,.求的通項(xiàng)公式,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

等差數(shù)列{am}的前m項(xiàng)和為Sm,已知S3=,且S1,S2,S4成等比數(shù)列,
(1)求數(shù)列{am}的通項(xiàng)公式.
(2)若{am}又是等比數(shù)列,令bm= ,求數(shù)列{bm}的前m項(xiàng)和Tm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)于任意的不超過(guò)數(shù)列的項(xiàng)數(shù)),若數(shù)列的前項(xiàng)和等于該數(shù)列的前項(xiàng)之積,則稱該數(shù)列為型數(shù)列。
(1)若數(shù)列是首項(xiàng)型數(shù)列,求的值;
(2)證明:任何項(xiàng)數(shù)不小于3的遞增的正整數(shù)列都不是型數(shù)列;
(3)若數(shù)列型數(shù)列,且試求的遞推關(guān)系,并證明對(duì)恒成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)是正數(shù)組成的數(shù)列,.若點(diǎn)在函數(shù)的導(dǎo)函數(shù)圖像上.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),是否存在最小的正數(shù),使得對(duì)任意都有成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對(duì)于任意的,總有成等差數(shù)列.
(1)求;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè)數(shù)列的前項(xiàng)和為,且,求證:對(duì)任意正整數(shù),總有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)等差數(shù)列的首項(xiàng)及公差均是正整數(shù),前項(xiàng)和為,且,,,則=    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若,則(   )
A.          B.       C.           D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若數(shù)列的通項(xiàng)公式,記,試計(jì)算          ,推測(cè)              .

查看答案和解析>>

同步練習(xí)冊(cè)答案