(本題滿分14分)已知
(1)求函數(shù)的最大值; (2)求使成立的x的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)f(x)=, x∈[3, 5]
(1)判斷f(x)單調(diào)性并證明;(2)求f(x)最大值,最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)函數(shù)是定義在上的奇函數(shù),且.
(1)求實數(shù)的值.(2)用定義證明在上是增函數(shù);
(3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值(無需說明理由).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)函數(shù)的導(dǎo)函數(shù)為,若函數(shù)的圖像關(guān)于直線對稱,且.
(1)求實數(shù)a、b的值
(2)若函數(shù)恰有三個零點,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于函數(shù),若存在,使,則稱是的一
個"不動點".已知二次函數(shù)
(1)當(dāng)時,求函數(shù)的不動點;
(2)對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;
(3)在(2)的條件下,若的圖象上兩點的橫坐標(biāo)是的不動點,
且兩點關(guān)于直線對稱,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在R上的函數(shù)f(x)是最小正周期為2的奇函數(shù), 且當(dāng)x∈(0, 1)時,
f(x)= .
(Ⅰ)求f(x)在[-1, 1]上的解析式; (Ⅱ)證明f(x)在(0, 1)上時減函數(shù);
(Ⅲ)當(dāng)λ取何值時, 方程f(x)=λ在[-1, 1]上有解?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com