對于函數(shù),若存在,使,則稱是的一
個"不動點(diǎn)".已知二次函數(shù)
(1)當(dāng)時,求函數(shù)的不動點(diǎn);
(2)對任意實(shí)數(shù),函數(shù)恒有兩個相異的不動點(diǎn),求的取值范圍;
(3)在(2)的條件下,若的圖象上兩點(diǎn)的橫坐標(biāo)是的不動點(diǎn),
且兩點(diǎn)關(guān)于直線對稱,求的最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)冪函數(shù)過點(diǎn)(2,4),求出的解析式并用單調(diào)性定義證明在上為增函數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域?yàn)镽的函數(shù)是奇函數(shù).
(1)求的值;
(2)證明在上為減函數(shù).
(3)若對于任意,不等式恒成立,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三次函數(shù)的導(dǎo)函數(shù),,、為實(shí)數(shù)。
(Ⅰ)若曲線在點(diǎn)(,)處切線的斜率為12,求的值;
(Ⅱ)若在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,且,求函數(shù)的解析式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求當(dāng)m為何值時,f(x)=x2+2mx+3m+4.
(1)有且僅有一個零點(diǎn);(2)有兩個零點(diǎn)且均比-1大;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/79/f/bndng4.png" style="vertical-align:middle;" />,對于任意正實(shí)數(shù)恒有,且當(dāng)時,
(1)求的值;
(2)求證:在上是增函數(shù);
(3)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)若,證明在區(qū)間上是增函數(shù);
(2)若在區(qū)間上是單調(diào)函數(shù),試求實(shí)數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com