下列選項(xiàng)中是單調(diào)函數(shù)的為(  )
A、y=tanx
B、y=x-
1
x
C、y=lg(2x+1)
D、y=2|x|
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分別對A,B,C,D各個選項(xiàng)進(jìn)行分析,從而得出結(jié)論.
解答: 解:對于A:y=tanx,在(kπ-
π
2
,kπ+
π
2
)單調(diào)遞增,在整個定義域上不具有單調(diào)性,
對于B:y′=
x2+1
x2
>0,在(-∞,0)和(0,+∞)單調(diào)遞增,在整個定義域上不具有單調(diào)性,
對于C:y=lg(2x+1),定義域?yàn)椋海?
1
2
,+∞),在定義域上單調(diào)遞增,
對于D:y=2|x|是偶函數(shù),圖象關(guān)于y軸對稱,在整個定義域上不具有單調(diào)性,
故選:C.
點(diǎn)評:本題考查了函數(shù)的單調(diào)性問題,考查了指數(shù)函數(shù),對數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓的兩焦點(diǎn)坐標(biāo)分別為F1(-
3
,0),F(xiàn)2
3
,0),且橢圓過點(diǎn)P(1,-
3
2
).
(1)求橢圓方程;
(2)若 A為橢圓的左頂點(diǎn),作AM⊥AN與橢圓交于兩點(diǎn)M、N,試問:直線MN是否恒過x軸上的一個定點(diǎn)?若是,求出該點(diǎn)坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x2-4x+3,x∈[1,4],則f(x)的最小值為( 。
A、-1B、0C、3D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點(diǎn)A(5,1),AB邊上的中線CM所在直線方程為2x-y-5=0,AC邊上的高BH所在直線方程為x-2y-5=0.
(1)求AC邊所在直線方程;
(2)求頂點(diǎn)C的坐標(biāo);
(3)求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù),a≠0,x∈R).
(1)若函數(shù)f(x)的圖象過點(diǎn)(-2,1),且方程f(x)=0有且只有一個根,求f(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-1,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,a+b=1,則(a+
1
a
)(b+
1
b
)
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班的全體學(xué)生參加某項(xiàng)技能測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為:[20,40),[40,60),[60,80),[80,100],若不低于80分的人數(shù)是8,則該班的學(xué)生人數(shù)是( 。
A、45B、50C、55D、60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)曲線C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上的點(diǎn)到曲線C2
x=-2
2
+
1
2
y=1-
1
2
(t為參數(shù))上的點(diǎn)的最近距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(
x
+1)=x
,則函數(shù)f(x)=
 

查看答案和解析>>

同步練習(xí)冊答案