(本小題滿(mǎn)分12分)
已知是邊長(zhǎng)為2的等邊三角形,平面,上一動(dòng)點(diǎn).
(1)若的中點(diǎn),求直線(xiàn)與平面所成的角的正弦值;
(2)在運(yùn)動(dòng)過(guò)程中,是否有可能使平面?請(qǐng)說(shuō)明理由.
(1)解:取AC中點(diǎn)E,AP的中點(diǎn)F,連結(jié)FE、BE、則FE∥PC,BE A C

∴FE面ABC
建立如圖所示的空間直角坐標(biāo)系,則                                 
A(0,-1,0)   B(,0,0)  C(0,1,0)   P (0,1,)   F (0,1,)   …………2分
設(shè)是平面PBC的法向量,,則=0,且=0,∴
=-1,=-,=0,則             …………4分
由題設(shè)的中點(diǎn),則D與F重合,即D的坐標(biāo)為(0,1,)

                           …………6分
∴直線(xiàn)BD與面PBC所成角正弦值為                         …………7分(2)(0,2,(-,1,0)                      …………9分
20 ∴AP不垂直于BC
∴AP不可能垂直于面DBC,即不存在D點(diǎn),使AP面DBC       …………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD中,為正三角形,,,AC與BD交于O點(diǎn).將沿邊AC折起,使D點(diǎn)至P點(diǎn),已知PO與平面ABCD所成的角為,且P點(diǎn)在平面ABCD內(nèi)的射影落在內(nèi).

(Ⅰ)求證:平面PBD;
(Ⅱ)若時(shí),求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
如圖,在底面為直角梯形的四棱錐,平面,

⑴求證:;
⑵求直線(xiàn)與平面所成的角;
⑶設(shè)點(diǎn)在棱上,,若∥平面,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正四棱柱中,底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為4,E,F(xiàn)分別為棱AB,CD的中點(diǎn),.則三棱錐的體積V(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
如圖8,在直角梯形中,,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面互相垂直,如圖9.
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知空間四面體的每條邊都等于1,點(diǎn)分別是的中點(diǎn),則等于  。       )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分10分)
已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點(diǎn),AB="4AN," M、S分別為PB,BC的中點(diǎn).以A為原點(diǎn),射線(xiàn)AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標(biāo)系.
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在棱長(zhǎng)為的正方體中,則平面與平面間的距離   (   )
      
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知
AB
=(2,2,1),
AC
=(4,5,3)
,則平面ABC的單位法向量為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案