已知函數(shù),有下列命題:①的圖像關于軸對稱;②當時,當時,是減函數(shù);③的最小值是 .其中正確的命題是________________.
科目:高中數(shù)學 來源: 題型:
已知△ABC的三個頂點為A(-1,0),B(1,0),C(3,2),其外接圓為⊙H.
(1)若直線l過點C,且被⊙H截得的弦長為2,求直線l的方程;
(2)對于線段BH上的任意一點P,若在以C為圓心的圓上都存在不同的兩點M,N,使得點M是線段PN的中點,求⊙C的半徑r的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知是等差數(shù)列,其前項和為,是等比數(shù)列,且,,.
(1)求數(shù)列與的通項公式;
(2)對任意N,是否存在正實數(shù),使不等式恒成立,若存在,求出 的最小值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設函數(shù)f(x)=Asin(ωx+φ )(其中A>0,ω>0,-π<φ≤π)在x=處取得最大值2,其圖象與x軸的相鄰兩個交點的距離為.
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風險型產(chǎn)品的收益與投資額的算術平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖)
(3) 分別寫出兩種產(chǎn)品的收益與投資的函數(shù)關系;
(4) 該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com