(本小題滿分12分)

已知函數(shù)f(x)=x-ln(x+a).(a是常數(shù))

(I)求函數(shù)f(x)的單調(diào)區(qū)間;

(II) 當(dāng)在x=1處取得極值時,若關(guān)于x的方程f(x)+2x=x2+b在[,2]上恰有兩個不相等的實數(shù)根,求實數(shù)b的取值范圍;

(III)求證:當(dāng)

 

【答案】

 

(I) 函數(shù)的減區(qū)間為,增區(qū)間為

(II)

(III)證明略

【解析】解:(I) 由已知由函數(shù)的定義域為,,

,

,

,

所以函數(shù)的減區(qū)間為,增區(qū)間為.    …4分

(II)由題意,得 , a=0 .         ……5分

由(Ⅰ)知f(x)=x-lnx,

∴f(x)+2x=x2+b  ,即 x-lnx+2x=x2+b  , x2-3x+lnx+b=0,

設(shè)=x2-3x+lnx+b(x>0),

=2x-3+=,  

當(dāng)變化時,,的變化情況如下表:

x

(,1)

1

(1,2)

2

0

0

 

b--ln2

b-2

b-2+ln2

……6分

∵方程f(x)+2x=x2+b在[,2]上恰有兩個不相等的實數(shù)根,

  , ,

  +ln2≤b<2,即.  ……8分

(III)由(I) 和(II)可知當(dāng)時,,即,     

當(dāng)時,  .                                         ……… 10分

),則

所以當(dāng)時,

,

,

.                     ……12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟(jì)增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案