【題目】已知函數(shù)的一系列對(duì)應(yīng)值如下表:

1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個(gè)解析式;

2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,當(dāng)時(shí),方程 恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.

【答案】12

【解析】

1)根據(jù)表格提供的數(shù)據(jù)畫(huà)出函數(shù)圖象,求出、的值,寫(xiě)出的解析式即可;

2)由函數(shù)的最小正周期求出的值,再利用換元法,令,結(jié)合函數(shù)的圖象求出方程恰有兩個(gè)不同的解時(shí)的取值范圍.

解:(1)繪制函數(shù)圖象如圖所示:

設(shè)的最小正周期為,得.由

解得,

,即,

據(jù)此可得:,又,令可得

所以函數(shù)的解析式為

(2)因?yàn)楹瘮?shù)的周期為,又,所以

,因?yàn)?/span>,所以

上有兩個(gè)不同的解,等價(jià)于函數(shù)的圖象有兩個(gè)不同的交點(diǎn),,

所以方程時(shí)恰好有兩個(gè)不同的解的條件是,

即實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

(3)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2018·邯鄲一模)若甲、乙兩類水果的質(zhì)量(單位:kg)分別服從正態(tài)分布N(μ1σ2)N(μ2,σ2),其正態(tài)分布的密度曲線如圖所示,則下列說(shuō)法錯(cuò)誤的是(  )

A. 乙類水果的質(zhì)量服從的正態(tài)分布的參數(shù)σ264

B. 甲類水果的質(zhì)量比乙類水果的質(zhì)量更集中

C. 甲類水果的平均質(zhì)量μ10.4 kg

D. 甲類水果的平均質(zhì)量比乙類水果的平均質(zhì)量小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信紅包已經(jīng)成為中國(guó)百姓歡度春節(jié)時(shí)非常喜愛(ài)的一項(xiàng)活動(dòng).小明收集班內(nèi)20名同學(xué)今年春節(jié)期間搶到紅包金額(元)如下(四舍五入取整數(shù)):

102 52 41 121 72

162 50 22 158 46

43 136 95 192 59

99 22 68 98 79

對(duì)這20個(gè)數(shù)據(jù)進(jìn)行分組,各組的頻數(shù)如下:

Ⅰ)寫(xiě)出m,n的值,并回答這20名同學(xué)搶到的紅包金額的中位數(shù)落在哪個(gè)組別;

C組紅包金額的平均數(shù)與方差分別為E組紅包金額的平均數(shù)與方差分別為、,試分別比較的大。唬ㄖ恍鑼(xiě)出結(jié)論)

Ⅲ)從A,E兩組所有數(shù)據(jù)中任取2個(gè),求這2個(gè)數(shù)據(jù)差的絕對(duì)值大于100的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究所計(jì)劃利用“神舟十一號(hào)”飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品質(zhì)量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來(lái)決定具體安排,通過(guò)調(diào)查,搭載每件產(chǎn)品有關(guān)數(shù)據(jù)如表:

因素

產(chǎn)品

產(chǎn)品

備注

研制成本、搭載費(fèi)用之和/萬(wàn)元

20

30

計(jì)劃最大投資

金額300萬(wàn)元產(chǎn)品質(zhì)量/千克

10

5

最大搭載

質(zhì)量110千克預(yù)計(jì)收益/萬(wàn)元

80

60

——

則使總預(yù)計(jì)收益達(dá)到最大時(shí), 兩種產(chǎn)品的搭載件數(shù)分別為(  )

A. 9,4 B. 8,5 C. 9,5 D. 8,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1)解關(guān)于的不等式;

(2)若不等式的解集為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】研究發(fā)現(xiàn),北京 PM 2.5 的重要來(lái)源有土壤塵、燃煤、生物質(zhì)燃燒、汽車尾氣與垃圾焚燒、工業(yè)污染和二次無(wú)機(jī)氣溶膠,其中燃煤的平均貢獻(xiàn)占比約為 18%.為實(shí)現(xiàn)“節(jié)能減排”,還人民“碧水藍(lán)天”,北京市推行“煤改電”工程,采用空氣源熱泵作為冬天供暖.進(jìn)入冬季以來(lái),該市居民用電量逐漸增加,為保證居民取暖,市供電部門對(duì)該市 100 戶居民冬季(按 120 天計(jì)算)取暖用電量(單位:度)進(jìn)行統(tǒng)計(jì)分析,得到居民冬季取暖用電量的頻率分布直方圖如圖所示.

(1)求頻率分布直方圖中的值;

(2)從這 100 戶居民中隨機(jī)抽取 1 戶進(jìn)行深度調(diào)查,求這戶居民冬季取暖用電量在[3300,3400]的概率;

(3)在用電量為[3200,3250),[3250,3300),[3300,3350),[3350,3400]的四組居民中,用分層抽樣的方法抽取 34 戶居民進(jìn)行調(diào)查,則應(yīng)從用電量在[3200,3250)的居民中抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分16分)

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=n2ann∈N*.

1)試求出S1,S2,S3,S4,并猜想Sn的表達(dá)式;

2)用數(shù)學(xué)納法證明你的猜想,并求出an的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(數(shù)學(xué)文卷·2017屆湖北省黃岡市高三上學(xué)期期末考試第16題) “中國(guó)剩余定理”又稱“孫子定理”.1852年英國(guó)來(lái)華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問(wèn)題的解法傳至歐洲.1874年,英國(guó)數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國(guó)剩余定理”. “中國(guó)剩余定理”講的是一個(gè)關(guān)于整除的問(wèn)題,現(xiàn)有這樣一個(gè)整除問(wèn)題:將2至2017這2016個(gè)數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項(xiàng)數(shù)為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案