【題目】(2018·邯鄲一模)若甲、乙兩類水果的質(zhì)量(單位:kg)分別服從正態(tài)分布N(μ1,σ2)及N(μ2,σ2),其正態(tài)分布的密度曲線如圖所示,則下列說法錯誤的是( )
A. 乙類水果的質(zhì)量服從的正態(tài)分布的參數(shù)σ2=64
B. 甲類水果的質(zhì)量比乙類水果的質(zhì)量更集中
C. 甲類水果的平均質(zhì)量μ1=0.4 kg
D. 甲類水果的平均質(zhì)量比乙類水果的平均質(zhì)量小
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)如圖,設(shè)直線將坐標(biāo)平面分成四個區(qū)域(不含邊界),若函數(shù)的圖象恰好位于其中一個區(qū)域內(nèi),判斷其所在的區(qū)域并求對應(yīng)的的取值范圍;
(2)當(dāng)時,求證:且,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解校園噪音情況,學(xué)校環(huán)保協(xié)會對校園噪音值(單位:分貝)進(jìn)行了天的監(jiān)測,得到如下統(tǒng)計表:
噪音值(單位:分貝) | ||||||
頻數(shù) |
(1)根據(jù)該統(tǒng)計表,求這天校園噪音值的樣本平均數(shù)(同一組的數(shù)據(jù)用該組組間的中點值作代表).
(2)根據(jù)國家聲環(huán)境質(zhì)量標(biāo)準(zhǔn):“環(huán)境噪音值超過分貝,視為重度噪音污染;環(huán)境噪音值不超過分貝,視為度噪音污染.”如果把由上述統(tǒng)計表算得的頻率視作概率,回答下列問題:
(i)求周一到周五的五天中恰有兩天校園出現(xiàn)重度噪音污染而其余三天都是輕度噪音污染的概率.
(ii)學(xué)校要舉行為期天的“漢字聽寫大賽”校園選拔賽,把這天校園出現(xiàn)的重度噪音污染天數(shù)記為,求的分布列和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列抽取樣本的方式屬于簡單隨機(jī)抽樣的個數(shù)為( )
①從無限多個個體中抽取100個個體作為樣本.
②盒子里共有80個零件,從中選出5個零件進(jìn)行質(zhì)量檢驗.在抽樣操作時,從中任意拿出一個零件進(jìn)行質(zhì)量檢驗后再把它放回盒子里.
③從20件玩具中一次性抽取3件進(jìn)行質(zhì)量檢驗.
④某班有56名同學(xué),指定個子最高的5名同學(xué)參加學(xué)校組織的籃球賽.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平形四邊形,設(shè),平面,點為的中點,且,.
(1)若,求二面角的正切值;
(2)是否存在使,若存在求出,若不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)2017年招聘員工,其中A、B、C、D、E五種崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:
(Ⅰ)從表中所有應(yīng)聘人員中隨機(jī)選擇1人,試估計此人被錄用的概率;
(Ⅱ)從應(yīng)聘E崗位的6人中隨機(jī)選擇1名男性和1名女性,求這2人均被錄用的概率;
(Ⅲ)表中A、B、C、D、E各崗位的男性、女性錄用比例都接近(二者之差的絕對值不大于5%),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現(xiàn),若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請寫出這四種崗位.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中,,且.
(1)當(dāng)時,函數(shù)在處的切線與直線平行,試求m的值;
(2)當(dāng)時,令,若函數(shù)有兩個極值點,且,求 的取值范圍;
(3)當(dāng)時,試討論函數(shù)的零點個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的一系列對應(yīng)值如下表:
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個解析式;
(2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,當(dāng)時,方程 恰有兩個不同的解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,且橢圓過點.過點做兩條相互垂直的直線、分別與橢圓交于、、、四點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若, ,探究:直線是否過定點?若是,請求出定點坐標(biāo);若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com