如圖,ABO的直徑,直線CDO相切于EAD垂直CDDBC垂直CDC,EF垂直ABF,連接AE,BE.證明:

(1)FEBCEB;

(2)EF2AD·BC.

 

1)見解析(2)見解析

【解析】(1)由直線CDO相切,得CEBEAB.

ABO的直徑,得AEEB,從而EABEBF;

EFAB,得FEBEBF.

從而FEBEAB.FEBCEB.

(2)BCCE,EFAB,FEBCEB,BE是公共邊得RtBCERtBFE,所以BCBF.

類似可證RtADERtAFE,得ADAF.

又在RtAEB中,EFAB,故EF2AF·BF,

所以EF2AD·BC.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集12講練習(xí)卷(解析版) 題型:選擇題

已知空間三條直線a,bm及平面α,且a,bα.條件甲:ma,mb;條件乙:m⊥α,條件乙成立條件甲成立(  )

A充分非必要條件 B.必要非充分條件

C充分且必要條件 D.既非充分也非必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-5不等式選講 練習(xí)卷(解析版) 題型:解答題

(1)設(shè)x≥1,y≥1,證明xyxy;

(2)1abc,證明logablogbclogca≤logbalogcblogac.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-4坐標(biāo)系與參數(shù)方程練習(xí)卷(解析版) 題型:填空題

在直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為 (φ為參數(shù),a>b>0).在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l與圓O的極坐標(biāo)方程分別為ρsin m(m為非零常數(shù))ρb.若直線l經(jīng)過橢圓C的焦點(diǎn),且與圓O相切,則橢圓C的離心率為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-4坐標(biāo)系與參數(shù)方程練習(xí)卷(解析版) 題型:選擇題

在極坐標(biāo)系中,圓ρ2cos θ的垂直于極軸的兩條切線方程分別為(  )

Aθ0(ρR)ρcos θ2

Bθ (ρR)ρcos θ2

Cθ (ρR)ρcos θ1

Dθ0(ρR)ρcos θ1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-1幾何證明選講練習(xí)卷(解析版) 題型:解答題

如圖,D,E分別為ABCABAC的中點(diǎn),直線DEABC的外接圓于F,G兩點(diǎn),若CFAB,證明:

(1)CDBC;

(2)BCD∽△GBD.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題

設(shè)角A,B,CABC的三個內(nèi)角.

(1)設(shè)f(A)sin A2sin ,當(dāng)AA0時,f(A)取極大值f(A0),試求A0f(A0)的值;

(2)當(dāng)AA0時,·=-1,求BC邊長的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(四)第二章第一節(jié)練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)y=f(x+1)的定義域是[-2,3],y=f(2x-1)的定義域是(  )

(A)[0,] (B)[-1,4]

(C)[-5,5] (D)[-3,7]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(五)第二章第二節(jié)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)對于任意x,yR,總有f(x)+f(y)=f(x+y),且當(dāng)x>0,f(x)<0,f(1)=-.

(1)求證:f(x)R上是減函數(shù).

(2)f(x)[-3,3]上的最大值和最小值.

 

查看答案和解析>>

同步練習(xí)冊答案