已知函數(shù)f(x)對(duì)于任意x,y∈R,總有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,f(1)=-.
(1)求證:f(x)在R上是減函數(shù).
(2)求f(x)在[-3,3]上的最大值和最小值.
(1)見解析 (2) 最大值為2,最小值為-2
【解析】(1)方法一:∵函數(shù)f(x)對(duì)于任意x,y∈R總有f(x)+f(y)=f(x+y),
∴令x=y=0,得f(0)=0.
再令y=-x,得f(-x)=-f(x).
在R上任取x1>x2,則x1-x2>0,
f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2).
又∵x>0時(shí),f(x)<0,而x1-x2>0,
∴f(x1-x2)<0,
即f(x1)<f(x2).
因此f(x)在R上是減函數(shù).
方法二:設(shè)x1>x2,
則f(x1)-f(x2)
=f(x1-x2+x2)-f(x2)
=f(x1-x2)+f(x2)-f(x2)
=f(x1-x2).
又∵x>0時(shí),f(x)<0,而x1-x2>0,
∴f(x1-x2)<0,
即f(x1)<f(x2),
∴f(x)在R上為減函數(shù).
(2)∵f(x)在R上是減函數(shù),
∴f(x)在[-3,3]上也是減函數(shù),
∴f(x)在[-3,3]上的最大值和最小值分別為f(-3)與f(3).
而f(3)=3f(1)=-2,f (-3)=-f(3)=2.
∴f(x)在[-3,3]上的最大值為2,最小值為-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-1幾何證明選講練習(xí)卷(解析版) 題型:解答題
如圖,AB為⊙O的直徑,直線CD與⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,連接AE,BE.證明:
(1)∠FEB=∠CEB;
(2)EF2=AD·BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(六)第二章第三節(jié)練習(xí)卷(解析版) 題型:填空題
已知y=f(x)+x2是奇函數(shù),且f(1)=1,若g(x)=f(x)+2,則g(-1)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(八)第二章第五節(jié)練習(xí)卷(解析版) 題型:填空題
函數(shù)y=loga(x-1)+2(a>0,且a≠1)的圖象恒過定點(diǎn) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(八)第二章第五節(jié)練習(xí)卷(解析版) 題型:選擇題
已知實(shí)數(shù)a,b滿足等式2a=3b,下列五個(gè)關(guān)系式:①0<b<a;
②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中可能成立的關(guān)系式有( )
(A)①②③ (B)①②⑤
(C)①③⑤ (D)③④⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(五)第二章第二節(jié)練習(xí)卷(解析版) 題型:填空題
函數(shù)y=-(x-3)|x|的遞增區(qū)間是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(五)第二章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
若函數(shù)y=ax與y=-在(0,+∞)上都是減函數(shù),則y=ax2+bx在(0,+∞)上是( )
(A)增函數(shù) (B)減函數(shù) (C)先增后減 (D)先減后增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(二)第一章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
設(shè)a,b∈R,則“a>1且0<b<1”是“a-b>0且>1”的( )
(A)充分而不必要條件 (B)必要而不充分條件
(C)充要條件 (D)既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(七)第二章第四節(jié)練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=關(guān)于x的方程f(x)+x-a=0有且只有一個(gè)實(shí)根,則實(shí)數(shù)a的取值范圍是( )
(A)a>1 (B)0<a<1
(C)a>2 (D)a<0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com