如圖,在三棱錐A-BCD中,平行于BC的平面MNPQ分別交AB、AC、CD、BD于M、N、P、Q四點(diǎn),且MN=PQ.

(1)求證:四邊形為平行四邊形;
(2)試在直線AC上找一點(diǎn)F,使得.
(1)詳見試題解析;(2)在面中過;在面中過,則即為所求.

試題分析:(1)利用線面平行的性質(zhì)定理先證明四邊形的兩組對邊分別平行,從而證得四邊形為平行四邊形;(2)利用線面垂直的性質(zhì)定理.
試題解析:(1)證明:.                          2分
同理四邊形為平行四邊形.            6分
(2)解:在面中過;在面中過
.                       12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD⊥平面CDE,H是BE的中點(diǎn),G是AE,DF的交點(diǎn).

(1)求證:GH∥平面CDE;
(2)求證:面ADEF⊥面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱錐P ABC中,已知PA⊥平面ABC,△ABC是邊長為2的正三角形,D,E分別為PB,PC中點(diǎn)

(1)若PA=2,求直線AE與PB所成角的余弦值;
(2)若PA,求證:平面ADE⊥平面PBC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在四棱錐中,底面是矩形,平面,,分別是的中點(diǎn).

(1)求證:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知:菱形所在平面與直角梯形所在平面互相垂直,點(diǎn)分別是線段的中點(diǎn).

(1)求證:平面平面;
(2)點(diǎn)在直線上,且//平面,求平面與平面所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形所在的平面與正方形所在的平面相互垂直,、分別是、的中點(diǎn).
 
(1)求證:面;
(2)求直線與平面所成的角正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于空間兩條直線、與平面,下列命題正確的是(   )
A.若,則B.若,則
C.,則D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于直線a,b,c以及平面M,N,給出下面命題:
①若a//M,b//M, 則a//b  ②若a//M, b⊥M,則b⊥a   ③若aM,bM,且c⊥a,c⊥b,則c⊥M   ④若a⊥M, a//N,則M⊥N,其中正確命題的個數(shù)為(   )
A.0個B.1個C.2個D.3個

查看答案和解析>>

同步練習(xí)冊答案