關于直線a,b,c以及平面M,N,給出下面命題:
①若a//M,b//M, 則a//b  ②若a//M, b⊥M,則b⊥a   ③若aM,bM,且c⊥a,c⊥b,則c⊥M   ④若a⊥M, a//N,則M⊥N,其中正確命題的個數(shù)為(   )
A.0個B.1個C.2個D.3個
C
①錯.a 與b可能異面,也可能相交;②過a作一個平面N,與平面M交于直線c,則a//c,因為b⊥M,所以b⊥c,所以b⊥a.正確.③因為a,b不一定相交,所以此命題錯誤.
④過a作一個平面Q交N于直線b,則a//b,因為a⊥M,所以b⊥M,所以M⊥N,正確.
解本小題的關系是掌握線線,線面,面面平行與垂直的判定及性質。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱柱中, D是 AC的中點。

求證://平面 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐A-BCD中,平行于BC的平面MNPQ分別交AB、AC、CD、BD于M、N、P、Q四點,且MN=PQ.

(1)求證:四邊形為平行四邊形;
(2)試在直線AC上找一點F,使得.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題13分)如圖,棱錐的底面是矩形,⊥平面,,

(1)求證:⊥平面;
(2)求二面角的大。
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分) 如圖,已知平面∩平面=AB,PQ⊥于Q,PC⊥于C,CD⊥于D.

(1)求證:P、C、D、Q四點共面;
(2)求證:QD⊥AB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分) 如圖,直三棱柱中, ,.
(Ⅰ)證明:;
(Ⅱ)求二面角的正切值.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在四棱柱中,側面⊥底面,,底面為直角梯形,其中
,O為中點.

(Ⅰ)求證:平面 ;
(Ⅱ)求銳二面角A—C1D1—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

單位正方體在一個平面內的投影面積的最大值和最小值分別為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線∥平面,直線,則的位置關系是           (  )
A.B.異面
C.相交D.沒有公共點

查看答案和解析>>

同步練習冊答案