以長方體的各頂點為頂點,能構建四棱錐的個數(shù)是(  )
A.4B.8C.12D.48
D
設長方體ABCD-A1B1C1D1,若點A為四棱錐的頂點,則底面可以為不過點A的矩形A1B1C1D1,矩形BCC1B1,矩形CDD1C1,矩形BB1D1D,矩形BCD1A1,矩形CDA1B1,共有6個不同的四棱錐,8個頂點可以分別作為四棱錐的頂點,共能構建6×8=48個不同的四棱錐,故選D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題


下列命題,其中正確命題的個數(shù)是(  )
①以直角三角形的一邊為對稱軸旋轉一周所得的旋轉體是圓錐 
②以直角梯形的一腰為對稱軸旋轉一周所得的旋轉體是圓臺 
③圓柱、圓錐、圓臺的底面都是圓 
④一個平面去截一個圓錐得到一個圓錐和一個圓臺
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖1,在四棱錐P-ABCD中,底面ABCD是正方形,側棱底面ABCD,PD=DCEPC的中點,作PBF
(1)  證明:平面EDB;
(2)  證明:平面EFD
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

 如圖所示,空間四邊形ABCD中,E、F、G分別在AB、BC、CD上,且滿足AE∶EB=CF∶FB=2∶1,CG∶GD="   "

3∶1,過E、F、G的平面交AD于H,連接EH.
(1)求AH∶HD;
(2)求證:EH、FG、BD三線共點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在四面體PABC中,已知PA=PB=PC=AB=AC=,BC=,則P-ABC的體積V的取值范圍是_____________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列命題中:
①用一個平行于棱錐底面的平面去截棱錐,底面和截面之間的部分叫棱臺;②棱臺的各側棱延長后一定相交于一點;③圓臺可以看做直角梯形以其垂直于底邊的腰所在直線為旋轉軸,其余三邊旋轉形成的曲面圍成的幾何體;④半圓繞其直徑所在直線旋轉一周形成球.
正確命題的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


用一個平面截半徑為25cm的球,截面面積是225πcm2,則球心到截面的距離為多少??

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在六面體ABCDA1B1C1D1中,四邊形ABCD是邊長為2的正方形,四邊形A1B1C1D1是邊長為1的正方形,DD1⊥平面A1B1C1D1,DD1⊥平面ABCD,DD1=2.

(Ⅰ)求證:A1C1與AC共面,B1D1與BD共面;
(Ⅱ)求證:平面A1ACC1⊥平面B1BDD1;
(Ⅲ)求二面角A-BB1-C的大小(用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若一個底面邊長為,棱長為的正六棱柱的所有頂點都在一個平面上,則此球的體積為       

查看答案和解析>>

同步練習冊答案