已知為R上的可導(dǎo)函數(shù),當(dāng)時(shí),,則函數(shù)的零點(diǎn)分?jǐn)?shù)為(  )
A.1B.2C.0D.0或2
C

試題分析:因?yàn)楹瘮?shù)為R上的可導(dǎo)函數(shù),當(dāng)時(shí), .即可.令,即.所以可得.所以當(dāng)函數(shù)時(shí)單調(diào)遞增,所以.即函數(shù)當(dāng)時(shí),.同理時(shí),.又因?yàn)楹瘮?shù)可化為.所以當(dāng)時(shí),即與x軸沒交點(diǎn).當(dāng)時(shí),.所以函數(shù)的零點(diǎn)個(gè)數(shù)為0.故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某地政府為科技興市,欲在如圖所示的矩形ABCD的非農(nóng)業(yè)用地中規(guī)劃出一個(gè)高科技工業(yè)園區(qū)(如圖中陰影部分),形狀為直角梯形QPRE(線段EQ和RP為兩個(gè)底邊),已知其中AF是以A為頂點(diǎn)、AD為對(duì)稱軸的拋物線段.試求該高科技工業(yè)園區(qū)的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)證明:當(dāng)a≥1時(shí),證明不等式≤x+1對(duì)x∈R恒成立;
(Ⅲ)對(duì)于在(0,1)中的任一個(gè)常數(shù)a,試探究是否存在x0>0,使得>x0+1成立?如果存在,請(qǐng)求出符合條件的一個(gè)x0;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80,已知貨車每小時(shí)的運(yùn)輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為a元.
(1)將全程運(yùn)輸成本y(元)表示為速度v()的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)為了使全程運(yùn)輸成本最小,貨車應(yīng)以多大的速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)上的單調(diào)區(qū)間;
(2)設(shè)函數(shù),是否存在區(qū)間,使得當(dāng)時(shí)函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824033045767572.png" style="vertical-align:middle;" />,若存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知P()為函數(shù)圖像上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線OP的斜率。
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),求函數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中
(Ⅰ) 當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若時(shí),函數(shù)有極值,求函數(shù)圖象的對(duì)稱中心的坐標(biāo);
(Ⅲ)設(shè)函數(shù) (是自然對(duì)數(shù)的底數(shù)),是否存在a使上為減函數(shù),若存在,求實(shí)數(shù)a的范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),且,則當(dāng)時(shí), 的取值范圍是  (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)的導(dǎo)數(shù)為,且,則___.

查看答案和解析>>

同步練習(xí)冊(cè)答案