【題目】出租車幾何學(xué)是由十九世紀(jì)的赫爾曼·閔可夫斯基所創(chuàng)立的.在出租車幾何學(xué)中,點(diǎn)還是形如的有序?qū)崝?shù)對(duì),直線還是滿足的所有組成的圖形,角度大小的定義也和原來一樣.直角坐標(biāo)系內(nèi)任意兩點(diǎn),,定義它們之間的一種“距離”:;到兩點(diǎn)P.Q“距離”相等的點(diǎn)的軌跡稱為線段PQ的“垂直平分線”.已知點(diǎn)、、,請(qǐng)解決以下問題:
(1)求線段上一點(diǎn)到原點(diǎn)的“距離”;
(2)寫出線段AB的“垂直平分線”的軌跡方程,并作出大致圖像;
(3)定義:若三角形三邊的“垂直平分線”交于一點(diǎn),則該點(diǎn)稱為三角形的“外心”.試判斷 的“外心”是否存在,如果存在,求出“外心”;如果不存在,說明理由.
【答案】(1)2 (2)見解析 (3)存在,;
【解析】
(1)根據(jù)出租車幾何學(xué)中“距離”的定義計(jì)算;
(2)根據(jù)出租車幾何學(xué)中“垂直平分線”的定義計(jì)算,即可得到圖象;
(3)設(shè)“外心”坐標(biāo)為,根據(jù)定義且,得到的坐標(biāo)。
解:(1)
(2),
若,則;
若,則;
若,則;
(圖中每格小正方形單位是1)
(3)設(shè)“外心”坐標(biāo)為.則
由,得,
所以點(diǎn)M在上
又因?yàn)?/span>,得,
所以點(diǎn)M在上,
,所以“外心”,
點(diǎn)在6|+|n-9|上,
所以三邊交于一點(diǎn),存在“外心”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然對(duì)數(shù)的底數(shù),e≈2.718…).
(1)求函數(shù)f(x)的極值;
(2)若函數(shù)y=f(x)g(x)在區(qū)間[1,2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)h(x)=在區(qū)間(0,+∞)上既存在極大值又存在極小值,并且函數(shù)h(x)的極大值小于整數(shù)b,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)a=1時(shí),求函數(shù)在(2,)處的切線方程:
(2)當(dāng)a=2時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(3)若在上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左.右焦點(diǎn)分別為,為坐標(biāo)原點(diǎn).
(1)若斜率為的直線交橢圓于點(diǎn),若線段的中點(diǎn)為,直線的斜率為,求的值;
(2)已知點(diǎn)是橢圓上異于橢圓頂點(diǎn)的一點(diǎn),延長(zhǎng)直線,分別與橢圓交于點(diǎn),設(shè)直線的斜率為,直線的斜率為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品廠為了檢查甲、乙兩條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取100件產(chǎn)品作為樣本稱出它們的質(zhì)量(單位:毫克),質(zhì)量值落在的產(chǎn)品為合格品,否則為不合格品.如表是甲流水線樣本頻數(shù)分布表,如圖是乙流水線樣本的頻率分布直方圖.
產(chǎn)品質(zhì)量/毫克 | 頻數(shù) |
3 | |
9 | |
19 | |
35 | |
22 | |
7 | |
5 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為產(chǎn)品的包裝合格與兩條自動(dòng)包裝流水線的選擇有關(guān)?
甲流水線 | 乙流水線 | 總計(jì) | |
合格品 | |||
不合格品 | |||
總計(jì) |
附表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,)
(2)按照以往經(jīng)驗(yàn),在每小時(shí)次品數(shù)超過180件時(shí),產(chǎn)品的次品率會(huì)大幅度增加,為檢測(cè)公司的生產(chǎn)能力,同時(shí)盡可能控制不合格品總量,公司工程師抽取幾組一小時(shí)生產(chǎn)產(chǎn)品數(shù)據(jù)進(jìn)行次品情況檢查分析,在(單位:百件)件產(chǎn)品中,得到次品數(shù)量(單位:件)的情況匯總?cè)缦卤硭荆?/span>
(百件) | 0.5 | 2 | 3.5 | 4 | 5 |
(件) | 2 | 14 | 24 | 35 | 40 |
根據(jù)公司規(guī)定,在一小時(shí)內(nèi)不允許次品數(shù)超過180件,請(qǐng)通過計(jì)算分析,按照公司的現(xiàn)有生產(chǎn)技術(shù)設(shè)備情況,判斷可否安排一小時(shí)生產(chǎn)2000件的任務(wù)?
(參考公式:用最小二乘法求線性回方程的系數(shù)公式
;)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地的出租車價(jià)格規(guī)定:起步費(fèi)元,可行公里,公里以后按每公里元計(jì)算,可再行公里;超過公里按每公里元計(jì)算,假設(shè)不考慮堵車和紅綠燈等所引起的費(fèi)用,也不考慮實(shí)際收取費(fèi)用去掉不足一元的零頭等實(shí)際情況,即每一次乘車的車費(fèi)由行車?yán)锍涛ㄒ淮_定。
(1)若小明乘出租車從學(xué)校到家,共公里,請(qǐng)問他應(yīng)付出租車費(fèi)多少元?
(2)求車費(fèi)(元)與行車?yán)锍?/span>(公里)之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形△ABC的兩腰AB和AC所在直線的方程分別為和是底邊BC上一點(diǎn),求:
(1)底邊BC所在直線的方程;
(2)△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com