【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)試分別將曲線C1的極坐標(biāo)方程ρ=sinθ-cosθ和曲線C2的參數(shù)方程(t為參數(shù))化為直角坐標(biāo)方程和普通方程;
(2)若紅螞蟻和黑螞蟻分別在曲線C1和曲線C2上爬行,求紅螞蟻和黑螞蟻之間的最大距離(視螞蟻為點(diǎn)).
【答案】(1)C1的直角坐標(biāo)方程為x2+y2+x-y=0;曲線C2:x2+y2=2(2).
【解析】
(1)將曲線方程兩邊同乘以進(jìn)行化簡;將曲線C2的參數(shù)方程分別對(duì)進(jìn)行平方再化簡;
(2)由(1)知兩個(gè)曲線是圓,且內(nèi)切,故最大距離為大圓的直徑.
(1)由題意可得曲線C1的直角坐標(biāo)方程為
x2+y2+x-y=0,
曲線C2:即x2+y2=2.
(2)由(1)知曲線C1、曲線C2均為圓,
圓心分別為、(0,0),半徑分別為,,
則兩圓的圓心距為==
所以圓C1:x2+y2+x-y=0與圓C2:x2+y2=2內(nèi)切.
所以紅螞蟻和黑螞蟻之間的最大距離為圓C2的直徑2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)老師給出一個(gè)函數(shù),甲、乙、丙、丁四個(gè)同學(xué)各說出了這個(gè)函數(shù)的一條性質(zhì):甲:在 上函數(shù)單調(diào)遞減;乙:在上函數(shù)單調(diào)遞增;丙:在定義域R上函數(shù)的圖象關(guān)于直線對(duì)稱;。不是函數(shù)的最小值.老師說:你們四個(gè)同學(xué)中恰好有三個(gè)人說的正確.那么,你認(rèn)為____說的是錯(cuò)誤的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在含有個(gè)元素的集合中,若這個(gè)元素的一個(gè)排列(,,…,)滿足,則稱這個(gè)排列為集合的一個(gè)錯(cuò)位排列(例如:對(duì)于集合,排列是的一個(gè)錯(cuò)位排列;排列不是的一個(gè)錯(cuò)位排列).記集合的所有錯(cuò)位排列的個(gè)數(shù)為.
(1)直接寫出,,,的值;
(2)當(dāng)時(shí),試用,表示,并說明理由;
(3)試用數(shù)學(xué)歸納法證明:為奇數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙兩位同學(xué)上學(xué)期間,每天7:10之前到校的概率均為.假定甲、乙兩位同學(xué)到校情況互不影響,且任一同學(xué)每天到校情況相互獨(dú)立.
(1)用表示甲同學(xué)上學(xué)期間的每周五天中7:10之前到校的天數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(2)記“上學(xué)期間的某周的五天中,甲同學(xué)在7:10之前到校的天數(shù)比乙同學(xué)在7:10之前到校的天數(shù)恰好多3天”為事件,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線C1,C2的極坐標(biāo)方程分別為ρ=-2cosθ,ρcos=1.
(1)求曲線C1和C2的公共點(diǎn)的個(gè)數(shù);
(2)過極點(diǎn)作動(dòng)直線與曲線C2相交于點(diǎn)Q,在OQ上取一點(diǎn)P,使|OP|·|OQ|=2,求點(diǎn)P的軌跡,并指出軌跡是什么圖形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極大值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本著健康、低碳的生活理念,租用公共自行車騎行的人越來越多.某種公共自行車的租用收費(fèi)標(biāo)準(zhǔn)為:每次租車不超過1小時(shí)免費(fèi),超過1小時(shí)的部分每小時(shí)收費(fèi)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).甲、乙兩人相互獨(dú)立來租車,每人各租1輛且租用1次.設(shè)甲、乙不超過1小時(shí)還車的概率分別為和;1小時(shí)以上且不超過2小時(shí)還車的概率分別為和;兩人租車時(shí)間都不會(huì)超過3小時(shí).
(1) 求甲、乙兩人所付租車費(fèi)用相同的概率;
(2) 記甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃在迎春節(jié)聯(lián)歡會(huì)中設(shè)一項(xiàng)抽獎(jiǎng)活動(dòng):在一個(gè)不透明的口袋中裝入外形一樣號(hào)
碼分別為1,2,3,…,10的十個(gè)小球;顒(dòng)者一次從中摸出三個(gè)小球,三球號(hào)碼有且僅有兩個(gè)連號(hào)的為三等獎(jiǎng),獎(jiǎng)金30元;三球號(hào)碼都連號(hào)為二等獎(jiǎng),獎(jiǎng)金60元;三球號(hào)碼分別為1,5,10為一等獎(jiǎng),獎(jiǎng)金240元;其余情況無獎(jiǎng)金。
(1)求員工甲抽獎(jiǎng)一次所得獎(jiǎng)金ξ的分布列與期望;
(2)員工乙幸運(yùn)地先后獲得四次抽獎(jiǎng)機(jī)會(huì),他得獎(jiǎng)次數(shù)的方差是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com