已知無窮數(shù)列的前項(xiàng)和為,且滿足,其中、、是常數(shù).
(1)若,,,求數(shù)列的通項(xiàng)公式;
(2)若,,,且,求數(shù)列的前項(xiàng)和;
(3)試探究、、滿足什么條件時(shí),數(shù)列是公比不為的等比數(shù)列.
(1);(2);(3),或或,.
解析試題分析:(1)已知與的關(guān)系,要求,一般是利用它們之間的關(guān)系,把,化為,得出數(shù)列的遞推關(guān)系,從而求得通項(xiàng)公式;(2)與(1)類似,先求出,時(shí),推導(dǎo)出與之間的關(guān)系,求出通項(xiàng)公式,再求出前項(xiàng)和;(3)這是一類探究性命題,可假設(shè)結(jié)論成立,然后由這個假設(shè)的結(jié)論來推導(dǎo)出條件,本題設(shè)數(shù)列是公比不為的等比數(shù)列,則,,代入恒成立的等式,得
對于一切正整數(shù)都成立,所以,,,得出這個結(jié)論之后,還要反過來,由這個條件證明數(shù)列是公比不為的等比數(shù)列,才能說明這個結(jié)論是正確的.在討論過程中,還要討論的情況,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ba/e/1q3pb3.png" style="vertical-align:middle;" />時(shí),,,當(dāng)然這種情況下,不是等比數(shù)列,另外.
試題解析:(1)由,得; 1分
當(dāng)時(shí),,即 2分
所以; 1分
(2)由,得,進(jìn)而, 1分
當(dāng)時(shí),
得,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7d/e/zicr71.png" style="vertical-align:middle;" />,所以, 2分
進(jìn)而 2分
(3)若數(shù)列是公比為的等比數(shù)列,
①當(dāng)時(shí),,
由,得恒成立.
所以,與數(shù)列是等比數(shù)列矛盾; 1分
②當(dāng),時(shí),,, 1分
由恒成立,
得對于一切正整數(shù)都成立
所以,或或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列{an}中,a16+a17+a18=a9=-36,其前n項(xiàng)和為Sn.
(1)求Sn的最小值,并求出Sn取最小值時(shí)n的值;
(2)求Tn=|a1|+|a2|+…+|an|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù),且),且數(shù)列是首項(xiàng)為4,公差為2的等差數(shù)列。
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)若,當(dāng)時(shí),求數(shù)列的前n項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列前n項(xiàng)和為,首項(xiàng)為,且成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,,.
(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)在數(shù)列中,是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,求出所有符合條件的項(xiàng);若不存在,請說明理由;
(3)若且,,求證:使得,,成等差數(shù)列的點(diǎn)列在某一直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是等差數(shù)列的前項(xiàng)和,滿足;是數(shù)列的前項(xiàng)和,滿足:.
(1)求數(shù)列,的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在等比數(shù)列中,,且是和的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足,求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和,.
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前n項(xiàng)和為,且,.設(shè)數(shù)列前n項(xiàng)和為,且,求數(shù)列、的通項(xiàng)公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com