如圖,已知四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求證:AB∥平面PCD;
(2)求證:BC⊥平面PAC;
(3)若M是PC的中點(diǎn),求三棱錐M-ACD的體積.
[證明] (1)由已知底面ABCD是直角梯形,AB∥DC,
又AB⊄平面PCD,CD⊂平面PCD,
∴AB∥平面PCD.
(2)在直角梯形ABCD中,過(guò)C作CE⊥AB于點(diǎn)E,則四邊形ADCE為矩形,
∴AE=DC=1
又AB=2,∴BE=1,
在Rt△BEC中,∠ABC=45°,
∴CE=BE=1,CB=,∴AD=CE=1,
則AC==,AC2+BC2=AB2,
∴BC⊥AC.
又PA⊥平面ABCD,∴PA⊥BC,
又PA∩AC=A,∴BC⊥平面PAC.
(3)∵M是PC中點(diǎn),
∴M到平面ADC的距離是P到平面ADC距離的一半.
∴VM-ACD=S△ACD·(PA)=×(×1×1)×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知E、F分別是正方體的棱BB1、AD的中點(diǎn),則直線EF和平面BDD1B1所成角的正弦值是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知某幾何體的俯視圖是如圖所示的邊長(zhǎng)為2的正方形,正視圖與側(cè)視圖是邊長(zhǎng)為2的正三角形,則其表面積是( )
A.8 B.12
C.4(1+) D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E為AB的中點(diǎn),將△ADE與△BEC分別沿ED、EC向上折起,使A、B重合于點(diǎn)P,則三棱錐P-DCE的外接球的體積為( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知正三棱柱ABC-A′B′C′的正視圖和側(cè)視圖如圖所示.設(shè)△ABC,△A′B′C′的中心分別是O,O′,現(xiàn)將此三棱柱繞直線OO′旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中對(duì)應(yīng)的俯視圖的面積為S,則S的最大值為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
側(cè)棱與底面垂直的棱柱稱(chēng)為直棱柱.已知直三棱柱ABC-A1B1C1的各頂點(diǎn)都在球O的球面上,且AB=AC=1,BC=,若球O的體積為π,則這個(gè)直三棱柱的體積等于( )
A.1 B.
C.2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
l1、l2、l3是空間三條不同的直線,則下列命題正確的是( )
A.l1⊥l2,l2⊥l3⇒l1∥l3
B.l1⊥l2,l2∥l3⇒l1⊥l3
C.l1∥l2∥l3⇒l1、l2、l3共面
D.l1、l2、l3共點(diǎn)⇒l1、l2、l3共面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在正四面體P-ABC中,D、E、F分別是AB、BC、CA的中點(diǎn),下面四個(gè)結(jié)論中不成立的是( )
A.BC∥平面PDF B.DF⊥平面PAE
C.平面PDF⊥平面ABC D.平面PAE⊥平面ABC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com