【題目】若直角坐標(biāo)平面內(nèi)的兩點(diǎn)滿足條件:都在函數(shù)的圖象上;②關(guān)于原點(diǎn)對(duì)稱.則稱點(diǎn)對(duì)是函數(shù)的一對(duì)友好點(diǎn)對(duì)”(點(diǎn)對(duì)看作同一對(duì)友好點(diǎn)對(duì)”).已知函數(shù)(),若此函數(shù)的友好點(diǎn)對(duì)有且只有一對(duì),則的取值范圍是(

A.B.C.D.

【答案】C

【解析】

根據(jù)題意求出當(dāng)時(shí)函數(shù)關(guān)于原點(diǎn)對(duì)稱的函數(shù),條件轉(zhuǎn)化為函數(shù)只有一個(gè)交點(diǎn),作出兩個(gè)函數(shù)的圖象,利用數(shù)形結(jié)合結(jié)合對(duì)數(shù)函數(shù)的性質(zhì)進(jìn)行求解即可.

解:當(dāng)時(shí),函數(shù)關(guān)于原點(diǎn)對(duì)稱的函數(shù)為,即,

若此函數(shù)的“友好點(diǎn)對(duì)”有且只有一對(duì),

則等價(jià)為函數(shù)只有一個(gè)交點(diǎn),

作出兩個(gè)函數(shù)的圖象如圖,

,則只有一個(gè)交點(diǎn),滿足條件,

當(dāng)時(shí),;

,要使兩個(gè)函數(shù)只有一個(gè)交點(diǎn),則滿足5,

,得

,,

綜上可得的范圍是

即實(shí)數(shù)的取值范圍是

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),圓.

1)若直線過(guò)點(diǎn)且到圓心的距離為,求直線的方程;

2)設(shè)過(guò)點(diǎn)的直線與圓交于、兩點(diǎn)(的斜率為負(fù)),當(dāng)時(shí),求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=﹣x﹣cos2x+m(sinx﹣cosx)在(﹣∞,+∞)上單調(diào)遞減,則m的取值范圍是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某地一天從時(shí)的溫度變化曲線近似滿足函數(shù).

(1)求該地區(qū)這一段時(shí)間內(nèi)溫度的最大溫差.

(2)若有一種細(xì)菌在之間可以生存,則在這段時(shí)間內(nèi),該細(xì)菌最多能存活多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年,隨著中國(guó)第一款5G手機(jī)投入市場(chǎng),5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過(guò)數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬(wàn)臺(tái),其總成本為,其中固定成本為800萬(wàn)元,并且每生產(chǎn)1萬(wàn)臺(tái)的生產(chǎn)成本為1000萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷售收入萬(wàn)元滿足

1)將利潤(rùn)表示為產(chǎn)量萬(wàn)臺(tái)的函數(shù);

2)當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)求的解析式;

2)求時(shí),的值域:

3)設(shè),若對(duì)任意的,總有恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】故宮博物院五一期間同時(shí)舉辦“戲曲文化展”、“明代御窖瓷器展”、“歷代青綠山水畫(huà)展”、 “趙孟頫書(shū)畫(huà)展”四個(gè)展覽.某同學(xué)決定在五一當(dāng)天的上、下午各參觀其中的一個(gè),且至少參觀一個(gè)畫(huà)展,則不同的參觀方案共有

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,且為棱的中點(diǎn),作于點(diǎn).

1)證明:平面;

2)若面與面所成二面角的大小為,求與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在第二屆烏鎮(zhèn)互聯(lián)網(wǎng)大會(huì)中, 為了提高安保的級(jí)別同時(shí)又為了方便接待,現(xiàn)將其中的五個(gè)參會(huì)國(guó)的人員安排酒店住宿,這五個(gè)參會(huì)國(guó)要在、、三家酒店選擇一家,且每家酒店至少有一個(gè)參會(huì)國(guó)入住,則這樣的安排方法共有

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案